

Revised: March 23, 2021

Product Information:

ATTO Tetrazines (for bioorthogonal TCO-tetrazine ligation)

Compound	Storage information	Shelf Life
Tetrazine modified reactive label, lyophilized or crystalline solid	Freeze upon receipt < -20°C Protect from light and moisture	When stored as indicated, ATTO tetrazines are stable for at least 3 years.
For optical properties see Table 1 on	page 2.	

Introduction:

Tetrazines readily react with strained or vinyl alkenes in a highly selective and bioorthogonal way. All **ATTO tetrazines** are based on **6-methyl-3-aryl tetrazine** (**MeTet**) which provides high stability in aqueous media and still shows very high reaction rates. The ligation of **ATTO tetrazines** with e.g. trans-cyclooctenes (TCO) proceeds with rate constants of up to 1000 M⁻¹ s⁻¹, about three orders of magnitude faster than typical azide alkyne cycloaddition (AAC) or strain promoted azide alkyne cycloaddition (SPAAC). This high reactivity is a prerequisite for any application performed under highly diluted conditions such as protein conjugations.

The TCO-tetrazine ligation can be considered as a strain promoted inverse electron demand Diels-Alder cycloaddition (SPIEDAC), forming a dihydropyridazine derivative^[1] (Figure 1).

Figure 1: TCO-tetrazine ligation with ATTO-dye labeled tetrazine.

For many ATTO-dyes the fluorescence is heavily quenched by the tetrazine residue. After the conjugation reaction has taken place the initially strongly reduced emission is restored, making them fluorogenic probes^[2]. This is reflected by turn on ratios of up to a factor 30 depending on the dye and reactant.

ATTO tetrazines are available for a variety of fluorophores. They are provided in units of 0.2 and 0.5 mg (Table 1).

Protocol for TCO-tetrazine ligation:

The following protocol describes the labeling procedure for **ATTO tetrazines** with TCO labeled biomolecules, e.g. proteins.

- Component A: Dissolve the ATTO tetrazine in the appropriate amount of DMSO to obtain a 0.5 - 1 mM solution. Aliquots of this solution may be stored at -20 °C.
 <u>Note:</u> The shelf life of such solutions will be significantly reduced depending on the quality of the solvent used.
- **Component B:** The TCO-carrying protein should be dissolved in a buffer like PBS, HBSS (Hank's balanced salt solution) or in case of transfected cells in an appropriate cell growth medium, e.g. DMEM (Dulbecco's modified Eagle medium).

Tetrazine conjugation

- Pipette the appropriate amount of **Component A** to **Component B** to achieve a final tetrazine concentration of $1 3 \mu M$.
- Incubate for 10 30 min at 4 °C, 25 °C or 37 °C depending on the application.
- After successful ligation, excess amount of ATTO tetrazine can be washed away using PBS, HBSS or DMEM (2-3 times). In the case of fluorogenic tetrazines, like ATTO 425 MeTet, ATTO 465 MeTet, ATTO 488 MeTet, ATTO 490LS MeTet, ATTO 532 MeTet and ATTO 655 MeTet, the washing step may be omitted.
- Cell fixation can be carried out with 4 % formaldehyde in PBS for 15 min followed by three wash cycles with HBSS.
- No fixation for live cell staining.

Table 1: ATTO-dye labeled tetrazines:

Duo	Order #		B434/	N4+	n	2	_
Dye	0.2 mg	0.5 mg	IVIVV	IVI ·	λ _{abs}	λ _{em}	Emax
ATTO 425	AD 425-2502	AD 425-2505	585	586	439	485	45000
ATTO 465	AD 465-2502	AD 465-2505	593	479	453	506	75000
ATTO 488	AD 488-2502	AD 488-2505	887	773	500	520	90000
ATTO 490LS	AD 490LS-2502	AD 490LS-2505	879	857	495	658	40000
ATTO 532	AD 532-2502	AD 532-2505	943	829	532	552	115000
ATTO 540Q	AD 540Q-2502	AD 540Q-2505	842	742	543		105000
ATTO 550	AD 550-2502	AD 550-2505	891	777	554	567	120000
ATTO 565	AD 565-2502	AD 565-2505	794	694	564	590	120000
ATTO 590	AD 590-2502	AD 590-2505	874	774	593	622	120000
ATTO 594	AD 594-2502	AD 594-2505	1003	989	603	626	120000
ATTO 647 N	AD 647 N- 2502	AD 647 N- 2505	930	830	646	664	150000
ATTO 655	AD 655-2502	AD 655-2505	825	711	663	680	125000
ATTO 680	AD 680-2502	AD 680-2505	823	709	681	698	125000

MW: molecular weight of the dye including counterions in g/mol; M*: molecular weight of dye cation (HPLC-MS acetonitrile/water 0.1 vol-% trifluoroacetic acid); λ_{abs} : longest wavelength absorption maximum in nm; λ_{em} : fluorescence maximum in nm; ϵ_{max} : molar decadic extinction coefficient at the longest-wavelength absorption maximum in M-1 cm⁻¹.

Literature: [1]

M. Blackman, M. Royzen, J. Fox, *Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity*, Journal of the American Chemical Society **130**, 13518 (2008).

N. Devaraj, R. Weissleder, *Biomedical applications of tetrazine cycloadditions*, Accounts of Chemical Research **44**, 816 (2011). T. Plass, S. Milles, C. Koehler, J. Szymanski, R. Mueller, M. Wiessler, C. Schultz, E. Lemke, *Amino acids for Diels-Alder reactions in living cells*, Angewandte Chemie International Edition **51**, 4166 (2012).

[2] G. Beliu, A. Kurz, A. Kuhlemann, L. Behringer-Pliess, M. Meub, N. Wolf, J. Seibel, Z.-D. Shi, M. Schnermann, J. Grimm, L. Lavis, S. Doose, M. Sauer, *Bioorthogonal labeling with tetrazine-dyes for super-resolution microscopy*, Communications Biology 2, 261 (2019).

Detailed information on each individual dye including risk and safety data as well as certificate of analysis (CoA) can be downloaded from our website at <u>www.atto-tec.com</u>.

Contact Information:

ATTO-TEC GmbH Martinshardt 7 D-57074 Siegen Germany **ATTO-TEC** products are high-quality reagents intended for research purposes only. These compounds must be used by, or under the direct supervision of, technically qualified individuals experienced in handling potentially hazardous chemicals. We refer to the **M**aterial **S**afety **D**ata **S**heet (MSDS) provided with each product.

Phone: +49(0)271-23853-0 Fax: +49(0)271-23853-11 e-mail: <u>info@atto-tec.com</u> http: <u>www.atto-tec.com</u> Additional information on **ATTO-TEC** and its entire product range is available on our website <u>www.atto-tec.com</u>. For further questions contact us directly by e-mail or fax.