

Fluorescent Labels and Dyes

product catalogue 2013/2015

Crystals of different fluorescent ATTO dyes gradually dissolving in ethanol.

Inset: dSTORM super-resolution imaging of the cytoskeletal network of mammalian cells with different ATTO dyes. (see p. 88)

Catalogue 2013/2015 reprint: 2013-11-18

Copyright © 2013 ATTO-TEC GmbH. All rights reserved

Contents

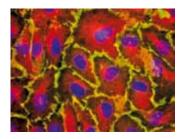
ATTO-TEC	6	600 nm - 700 nm	
ATTO-TEC GmbH: Fluorescence - What else?	6	ATTO 610	47
Contact Information	7	ATTO 620	48
Contact information	7	ATTO Rho14	49
Introduction	8	ATTO 633	50
		ATTO 647	51
Fluorescence	8	ATTO 647 N	52
How to Choose the Right Label	8	ATTO 655	53
Förster Resonance Energy Transfer (FRET)	10	ATTO Oxa12	54
Table of Förster-radii of selected ATTO-dye pairs	12	ATTO 665	55
Molecular Structure of Fluorescent Labels	14	ATTO 680	56
Properties of Fluorescent Labels	16	700 nm - 750 nm	
Triplet Labels	18	ATTO 700	57
Redox Labels	18	ATTO 725	58
Reactive Labels and Conjugates	19	ATTO 740	59
ATTO Derivatives and Conjugates	20		
About this Catalogue	23	Redox Label	60
ATTO-Labels	26	ATTO MB2	61
Optical Properties (Overview)	26	Fluorescence Quenchers	62
Fluorescent Labels	28	ATTO 540Q	63
		ATTO 580Q	64
350 nm - 500 nm		ATTO 612Q	65
ATTO 390	28	D 194 L 00 L 01 199	0.0
ATTO 425	29	Dyes with Large Stokes-Shift	66
ATTO 465	30	ATTO 390, ATTO 425, ATTO 465	66
ATTO 488	31	ATTO LS-Dye Series New	67
ATTO 495	32	ATTO 430LS New	68
500 nm - 600 nm		ATTO 490LS New	69
ATTO 514	33	ATTO TOOLS NOW	
ATTO 520	34	Customized Dyes and Services	70
ATTO 532	35		
ATTO Rho6G	36	Labeling Procedures	72
ATTO 550	37	Labeled Phospholipids	79
ATTO 565	38		
ATTO Rho3B	39	1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE)	80
ATTO Rho11	40	1,2-Dimyristoyl- <i>sn</i> -glycero-3-phosphoethanolamine (DMPE)	80
ATTO Rho12	41	1,2-Dioleoyl-sn-gylcero-3-phosphoethanolamine (DOPE)	81
ATTO Thio12	42	1-Palmitoyl-2-hydroxy- <i>sn</i> -glycero-3-phosphoethanolamine (PPE)	81
ATTO Rho101	43		
ATTO 590	44	Labeled Antibodies/Nucleotides	82
ATTO 594	45		
ATTO Rho13	46	Picture Gallery	85
		List of Abbreviations	90
		Acknowledgments	91

ATTO-TEC ATTO-TEC

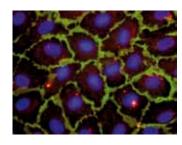
Since the start-up in 1999 **ATTO-TEC** is committed to being a first-class provider of novel fluorescent labels for bioanalytical and biomedical research. More than 40 years of academic know-how were condensed into the company in order to develop innovative solutions for the life science market. Science has always been a priority at **ATTO-TEC**. Our current staff brings together long-time expertise in dye chemistry and physics. We combine highest quality standards for all our products with an individualized customer support.

This latest catalogue 2013/2015 presents an overview of our well known ATTO-dyes, now in use world-wide. It includes many new labels and modifications. The catalogue is also meant to be a helpful introduction to the fascinating phenomenon of fluorescence. Its content is also available and continuously updated on our website (www.atto-tec.com).

We welcome any comments and suggestions in order to further improve our service and quality.

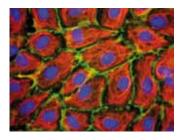

Your ATTO-TEC Team

Addresses:


ATTO-TEC GmbH Am Eichenhang 50 D-57076 Siegen Germany

ATTO-TEC GmbH P.O. Box 10 08 64 D-57008 Siegen Germany

Phone: +49(0)-271-2 38 53-0 Fax: +49(0)-271-2 38 53-11 E-mail: info@atto-tec.com


www.atto-tec.com

To Place Orders:

http:

Phone: +49(0)-271-2 38 53-0 Fax: +49(0)-271-2 38 53-11 E-mail: sales@atto-tec.com http: www.atto-tec.com

Headquarters of ATTO-TEC GmbH

Fluorescence

The emission of light by molecules, so-called *fluorescence*, has been known for more than one hundred years. However, it was only during the last few decades that versatile light sources (lasers etc.) and highly sensitive detectors have been developed.

In recent years fluorescence spectroscopy has become a powerful tool with outstanding sensitivity. By sophisticated techniques nowadays even single molecules can be studied via fluorescence. Most molecules of interest, e.g. in biochemistry, do not show fluorescence of their own. However, they may be chemically connected, i.e. *labeled*, with a fluorescent dye. Therefore the development of dyes that are suitable as labels is a subject of great importance in modern biology, medicine and diagnostics.

How to Choose the Right Label

To obtain the best possible results several factors have to be considered. First is the source of excitation: To reduce interference due to autofluorescence of the sample an excitation wavelength above 550 nm or even 600 nm is advisable. Secondly the label should show strong absorption at the excitation wavelength as well as high fluorescence quantum yield. Finally the emission spectrum of the label should match the transmission of the applied filter set. The filter set, in turn, must be chosen such that it rejects the excitation light scattered by the sample, yet transmits the fluorescence as effectively as possible.

For example, when using a diode laser of wavelength 635 nm as the excitation source and a filter set with high transmittance between 650 nm and 750 nm, ATTO 647**N** would be a very good choice. As can be seen from the list of ATTO-labels in this catalogue, ATTO 647**N** (p. 52) has a high extinction coefficient at 635 nm, a wavelength close to the maximum of the absorption curve, as well as an excellent quantum yield of fluorescence ($\eta_{\rm fl}$ = 65 %). It is to be noted, however, that besides optical considerations other factors may be important for the choice of label, e.g. pH-dependence, solubility, photostability, size of chromophore or linker and many others.

If there is no label available with an absorption maximum exactly matching the wavelength of the excitation source, a label with a slightly longer wavelength should be chosen. The absorbance will be smaller, but the larger difference

between excitation wavelength and fluorescence spectrum, which is always independent of excitation wavelength, has the advantage of better discrimination against scattered excitation light.

The table below provides an overview of some frequently used excitation sources and recommended ATTO-labels.

Light source	Emission line	Suitable dyes
Mercury arc lamp	365 nm	ATTO 390
	405 nm	ATTO 425, ATTO 430LS
	436 nm	ATTO 425, ATTO 430LS, ATTO 465
	546 nm	ATTO 550, ATTO 565
	577 nm	ATTO Rho12, ATTO Rho101, ATTO 590, ATTO Rho13, ATTO 594, ATTO 610, ATTO Rho14
Argon-Ion laser	488 nm	ATTO 488, ATTO 490LS, ATTO 514, ATTO 520
	514 nm	ATTO 514, ATTO 490LS, ATTO 520, ATTO 532, ATTO 550
Nd:YAG laser, frequency doubled	532 nm	ATTO 532, ATTO Rho6G, ATTO 550, ATTO 565, ATTO Rho11, ATTO Rho12
He-Ne laser	633 nm	ATTO 633, ATTO 647, ATTO 647 N , ATTO 655
Krypton-Ion laser	647 nm	ATTO 647, ATTO 647 N , ATTO 655, ATTO Oxa12, ATTO 665, ATTO 680
	676 nm	ATTO 680, ATTO 700, ATTO 725, ATTO 740
Diode laser	635 nm	ATTO 633, ATTO 647, ATTO 647 N , ATTO 655

АТТО-ТЕС

Förster Resonance Energy Transfer (FRET)

FRET is becoming more and more important as a method to determine distances at the molecular level and to study dynamic processes like binding of antibody/antigen pairs. If two dye molecules are located close to each other, their transition dipoles can interact, and energy can be transferred from one dye molecule (donor) to the other (acceptor). The rate of energy transfer $k_{\rm ET}$ is according to Förster theory:

$$k_{ET} = \frac{9 \ln 10}{128 \pi^5} \cdot \frac{\kappa^2}{N_A n^4 \tau_0 r^6} \int_0^\infty F(\lambda) \cdot \varepsilon(\lambda) \cdot \lambda^4 d\lambda$$

N_A Avogadro constant

n refractive index of solvent

 $\tau_{_{0}}$ radiative decay time of donor

distance between donor and acceptor molecule

 $F(\lambda) \qquad \text{fluorescence spectrum of donor, normalized according to} \\$

$$\int_{0}^{\infty} F(\lambda) d\lambda = 1$$

 $\varepsilon(\lambda)$ molar decadic extinction coefficient of acceptor

 $κ^2$ orientation factor: $κ^2 = (\cos φ_{DA} - 3 \cos φ_D \cos φ_A)^2$

 ϕ_{DA} angle between transition dipoles of donor and acceptor

 $\phi_{\scriptscriptstyle D}^{\scriptscriptstyle D}$ angle between donor transition dipole and line connecting the dipoles

 $\phi_{\text{\tiny A}}$ angle between acceptor transition dipole and line connecting the dipoles

As can be seen from the formula, the rate of energy transfer decreases with the 6th power of the distance between the dye molecules. FRET is very efficient only when donor and acceptor are in close proximity. With typical dye molecules it becomes negligibly small at distances above 100 Å (10 nm). Furthermore its rate is proportional to the extinction coefficient of the acceptor dye in the wavelength range of the donor fluorescence (overlap integral): FRET is most efficient, if there is a good spectral overlap between fluorescence of donor and absorption of acceptor. A practical measure of FRET efficiency is the distance at which the rate k_{ET} of energy transfer equals the rate of donor fluorescence. This so-called Förster-radius $R_{\scriptscriptstyle 0}$ is given by:

$$R_0^6 = \frac{9 \ln 10}{128 \pi^5} \cdot \frac{\kappa^2 \eta_{fl}}{N_A n^4} \int_0^\infty F(\lambda) \cdot \varepsilon(\lambda) \cdot \lambda^4 d\lambda$$

 $\eta_{\rm fl}$ fluorescence quantum yield of donor, $\eta_{\rm fl} = \tau_{\rm fl} / \tau_{\rm o}$

τ_π fluorescence decay time of donor

A table of Förster-radii for ATTO-dyes is presented on p. 12-13. These values have been calculated using the value n = 1.33 (refractive index of water) and with the assumption of statistical orientation of both donor and acceptor (orientation factor κ^2 = 2/3), a situation typically encountered in solutions of unbound dye molecules. However, in case of dye labeled biomolecules the chromophores of donor and acceptor may be held rigidly in a fixed position. As a consequence the orientation factor will assume a value different from 2/3. Since for κ^2 values between 0 and 4 are possible, the Förster-radius will vary accordingly. For accurate distance determinations via FRET it is vitally important to take the relative orientation of donor and acceptor into account.

ATTO-TEC

ATTO-TEC

Förster-radius R_0 of selected ATTO-dye pairs in Å (1 Å = 0.1 nm)

Dono	r				A	ссер	tor						
ATTO	390	425	465	488	495	514	520	532	540Q	550	565	580Q	590
390	14	41	50	58	59	59	60	56	54	53	52	47	48
425		36	46	59	59	60	61	58	56	56	55	51	51
465			37	55	54	58	61	59	59	59	59	56	57
488				50	46	58	61	64	63	63	63	60	60
495					36	45	47	49	50	50	51	49	50
514						59	64	62	61	61	60	56	57
520							57	65	66	67	67	64	64
532								57	63	68	68	67	68
550										58	63	69	70
565											61	69	72
590													63
594													
610													
620													
633													
647													
647N													
655													
680													
700													
725													
740													

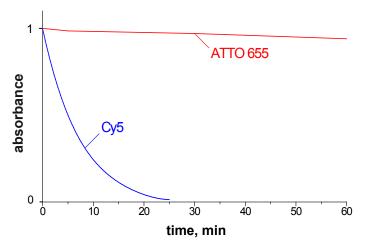
594	610	612Q	620	633	647	647N	655	680	700	725	740	ATTO
45	44	43	41	41	39	39	40	38	35	36	36	390
49	48	47	45	45	43	43	43	41	38	36	37	425
55	55	54	51	52	51	50	50	48	46	43	42	465
57	57	55	53	53	51	51	50	48	44	41	40	488
48	48	46	44	44	44	43	43	42	39	37	36	495
54	53	52	49	49	48	47	47	45	41	39	38	514
61	60	59	56	55	54	53	53	50	46	43	41	520
66	66	64	61	61	60	59	59	57	53	50	48	532
68	69	67	67	66	65	65	64	62	58	55	53	550
71	73	70	69	69	69	68	68	65	61	58	56	565
66	73	71	71	73	73	74	73	71	69	66	63	590
62	70	68	70	73	74	75	75	74	72	69	68	594
	64	63	66	70	72	73	76	75	74	69	68	610
			58	64	68	70	70	69	68	67	65	620
				60	68	69	72	73	72	72	71	633
					51	52	58	60	61	61	60	647
						65	72	75	74	73	72	647N
							58	64	66	66	65	655
								59	65	67	66	680
									58	66	66	700
										52	56	725
											54	740

Acceptor

Donor

Molecular Structure of Fluorescent Labels

The molecules of most common dyes, e.g. cyanines, have a more or less flexible structure. Hence their solutions contain a mixture of several isomers with varying properties. Since the equilibrium between the isomers depends on temperature and other environmental factors, absorption and fluorescence of such dyes are ill-defined. In stark contrast to cyanines, ATTO-dyes have a molecular structure that ensures high rigidity of the chromophore. They do not form equilibria with various isomers, their optical properties are nearly independent of solvent and temperature.

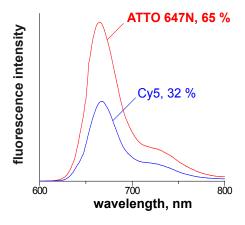

Most ATTO-labels are derivatives of:

• Coumarin $H_5C_2 \longrightarrow C_2H_5$ • Rhodamine $H_5C_2 \longrightarrow C_2H_5 \longrightarrow C_2H_5$

• Carbopyronin
$$H_3C$$
 CH_3
 CH_3
 CH_3
 CH_3
• Oxazine H_5C_2
 C_2H_5
 C_2H_5

Properties of Fluorescent Labels

Apart from absorption and fluorescence there are many other properties that are highly relevant with respect to the suitability of dyes as labels. Most important, the dye must remain intact during irradiation. Many common labels, e.g. Fluorescein (FITC), show very low photostability. As a result sensitivity and quality of imaging are limited if high-intensity laser excitation is used and processes are to be observed over long periods of time. This is a serious draw-back with microscopy and other techniques based on the confocal principle, e.g. in single-cell detection applications. In contrast to some widely used older dyes, the new patented ATTO-labels are designed to be much more stable under prolonged irradiation.



Photostability of ATTO 655 compared with common Cy5™ in water. Radiation of 250 W tungsten-halogen lamp focussed into 1 cm cell. Absorbance vs. time of illumination.

Many common fluorescent labels deteriorate even without any irradiation (i.e. in the dark), in particular when exposed to small concentrations of ozone present in the laboratory atmosphere. Under identical conditions of **ozone exposure** the new dyes **ATTO 647N** and **ATTO 655** last up to **100 times longer** than dyes like the older $Cy5^{TM}$ and Alexa 647^{TM} . This is very important in microarray applications, where the dye molecules are located at the surface and thus are directly exposed to the atmosphere.

Besides reduced background, an advantage of excitation in the red spectral region is that rugged diode lasers are readily available. Diode lasers are generally less expensive and more energy-efficient than gas lasers. Furthermore a variety of sensitive detectors is available for the visible-near-IR region. Excitation in the red spectral region is also advantageous when working with live cells, because damage is reduced.

The fluorescence efficiency of dyes is highest in the blue and green region of the spectrum. Here the quantum yield reaches in some cases almost the theoretical limit of 100 %. Towards longer wavelengths the efficiency of dyes drops drastically, in particular so in aqueous solution. However, **ATTO-TEC** has been able to develop labels that show high quantum yield even around 650 nm: The new **ATTO 647N** fluoresces in aqueous solution twice as strong as the older $Cy5^{TM}$.

Fluorescence quantum yield of **ATTO 647N** compared with common $Cy5^{TM}$ in water. Solutions of equal absorbance excited at 647 nm. Fluorescence intensity vs. wavelength.

Triplet Labels

On optical excitation of a dye molecule there is always a certain probability that the molecule is converted to the *triplet* state, a relatively long-lived, non-fluorescent excited state of the dye molecule. The occurrence of this state is frequently not desirable, as it promotes destruction (bleaching) of the dye. Nevertheless dyes with high triplet yield find application in photochemistry, photodynamic therapy etc. They are efficient sensitizers for the conversion of molecular oxygen (air) into its highly reactive form (singulet oxygen). In addition to the acridine dyes **ATTO 465** (p. 30) and **ATTO 495** (p. 32), both absorbing below 500 nm, we supply **ATTO Thio12** (p. 42), a triplet label derived from *Thiorhodamine*.

Redox Labels

A dye, well-known in biochemical and medical research, is *Methylene Blue*. It has very interesting redox properties: The dye, normally deep blue in color, is converted by mild reducing agents to its so-called *leuko*-form, which is colorless. Since this reaction is reversible, the blue color reappears on oxidation, e.g. by oxygen (air). These interconversions can be catalyzed enzymatically.

Methylene Blue as such cannot be coupled to biomolecules, because it lacks the necessary reactive groups. However, **ATTO-TEC** offers **ATTO MB2** a Methylene Blue derivative featuring a carboxylic acid functionality for coupling (p. 61). The dye is further available as NHS-ester for direct coupling to amino groups or as maleimide derivative for coupling to thiol groups. **ATTO-TEC** also supplies a biotin conjugate for binding to avidin or streptavidin. Additional conjugates can be prepared on request.

colorless

Reactive Labels and Conjugates

blue

ATTO-labels are designed for application in the area of life science, e.g. for labeling of DNA, RNA or proteins. Characteristic features of most labels are strong absorption, high fluorescence quantum yield, excellent photostability, exceptionally high ozone resistance, and good water solubility.

All ATTO-labels are available as NHS-esters for coupling to amino groups and as maleimides for coupling to thiol groups. In addition we offer most ATTO dyes functionalized with amine, azide (Click-Chemistry) and iodoacetamide. Dyes with other reactive substituents can be supplied on request.

Furthermore a variety of ATTO-dyes are available as phalloidin and streptavidin conjugates. The high affinity of streptavidin to biotin is the basis for the wide-spread use of streptavidin conjugates. In this connection all ATTO-dyes are also offered as biotin conjugates. ATTO dyes conjugated to other biomolecules are available on request.

ATTO Derivatives and Conjugates

Carboxy:

NHS-ester:

Maleimide:

Streptavidin conjugate:

Biotin conjugate:

Phalloidin conjugate:

Amine:

Azide:

lodoacetamide:

Alkyne:

About this Catalogue

All spectral data given have been measured at 22 °C on aqueous solutions (PBS, pH 7.4) of the dyes with free carboxy group. When there was a tendency to aggregate, the solution was diluted sufficiently to exhibit the monomeric absorption spectrum undisturbed by dimers. Although water is the most important solvent in biochemistry, it should be borne in mind that optical data of dyes, in particular and most pronounced the fluorescence efficiency and decay time, depend on the solvent as well as on other environmental factors. With most ATTO-dyes this influence is very weak indeed. Furthermore optical properties depend on the derivative (carboxy, NHS-ester, etc.). For instance, fluorescence quantum yield and decay time of the maleimide may be reduced compared to the dye with carboxy group (COOH). However, this is of no avail: As soon as the dye is coupled to a substrate (protein), the fluorescence is restituted.

The spectra presented in this catalogue will help to select the dye best suited for a particular experiment. For accurate data in digitized form the reader is referred to www.atto-tec.com (Support - Downloads - Spectra). - The correction factors CF_{260} and CF_{280} aid in calculating the degree of labeling (DOL), see "Labeling Procedures" (p. 70-76).

The molecular weight (MW) given has the common meaning, i.e. it refers to the dye including counterions. For mass spectrometry purposes the mass of the dye cation (M^+ or MH^+) is given. The value represents the mass of the signal of maximum intensity. Counterions (An^-) - no matter, what their charge or mass - do not play any role in the labeling reactions with biomolecules.

For further details on all products and for new developments please visit our website www.atto-tec.com.

АТТО-ТЕС

Although ATTO-dye molecules are small compared to biomolecules like proteins, DNA etc., they will affect their properties to a certain degree. Notably mass and, frequently, electrical charge of the biomolecule will be different after conjugation with a dye. To aid in the analysis of biomolecule-dye conjugates, the table below shows the mass and charge increase that occur on coupling with an ATTO-dye. Because biomolecules as well as ATTO-dyes may carry basic (-NH $_2$) and acidic (-COOH, -SO $_3$ H) substituents, both mass and electrical charge depend on pH. The data given in the table are based on the assumption of non-protonated amino groups (-NH $_2$), deprotonated acid groups (-COO $^{-}$, -SO $_3^{-}$) and neutral thiol groups. This reflects the situation given in a close-to-neutral environment (pH 6 - 8). It is worth mentioning that under more acidic conditions (pH < 4) the additional, non-reactive, carboxylic acid group of dyes like ATTO 565 and ATTO 590 will be protonated. As a consequence both mass and charge will be higher by one unit than the values given in the table, which are valid for pH 6 - 8.

Increase of Molecular Mass (Δm) and Charge (Δq) on Conjugation with ATTO-Labels

ATTO-Label	Δm (NHS-ester : amine)	Δm (maleimide : thiol)	Δq
ATTO 390	325.4	465.5	0
ATTO 425	383.4	523.6	0
ATTO 465	278.4	418.5	+ 1
ATTO 488	570.6	710.7	- 1
ATTO 495	334.4	474.6	+ 1
ATTO 514	734.6	874.7	- 1
ATTO 520	349.5	489.6	+ 1
ATTO 532	626.7	766.8	- 1
ATTO Rho6G	496.6	636,7	+ 1
ATTO 550	576.8	716.9	+ 1
ATTO 565	492.6	632.7	0
ATTO Rho3B	524.7	664.8	+ 1
ATTO Rho11	548.7	688.8	+ 1
ATTO Rho12	632.9	773.0	+ 1
ATTO Thio12	484.6	624.8	+ 1
ATTO Rho101	572.7	712.9	+ 1

ATTO-Label	Δm (NHS-ester : amine)	Δm (maleimide : thiol)	Δq
ATTO 590	572.7	712.8	0
ATTO Rho13	628.8	769.0	+ 1
ATTO 594	786.9	927.1	- 1
ATTO 610	373.5	513.7	+ 1
ATTO 620	494.7	634.8	+ 1
ATTO Rho14	766.6	906.8	+ 1
ATTO 633	534.7	674.9	+ 1
ATTO 647	574.8	714.9	0
ATTO 647 N	628.9	769.0	+ 1
ATTO 655	509.6	649.8	0
ATTO Oxa12	621.9	762.0	+ 1
ATTO 665	605.7	745.9	+ 1
ATTO 680	507.6	647.8	0
ATTO 700	547.7	687.8	0
ATTO 725	398.5	538.7	+ 1
ATTO 740	450.6	590.8	+ 1
ATTO 540Q	541.6	681.8	+ 1
ATTO 580Q	677.9	818.0	+ 1
ATTO 612Q	673.8	814.0	+ 1
ATTO MB2	338.4	478.5	+ 1
ATTO 430LS	547.7	687.8	- 1
ATTO 490LS	654.8	795.0	- 1

ATTO Fluorescent Labels

 O i luoi cac	CIIL LUL)CI3				
Label	λ _{abs} , nm	ε _{max} , M ⁻¹ cm ⁻¹	λ _{fl} , nm	η _{fi} , %	τ _{fl} , ns	Substitute for
ATTO 390	390	24000	479	90	5.0	
ATTO 425	436	45000	484	90	3.6	
ATTO 430LS	433	32000	547	65	4.0	
ATTO 465	453	75000	508	75	5.0	
ATTO 488	501	90000	523	80	4.1	Alexa 488*, FITC, FAM**
ATTO 490LS	496	40000	661	30	2.6	
ATTO 495	495	80000	527	20	1.0	
ATTO 514	511	115000	533	85	3,9	Alexa 514
ATTO 520	516	110000	538	90	3.6	JOE**, TET**
ATTO 532	532	115000	553	90	3.8	Alexa 532*, HEX**
ATTO Rho6G	535	115000	560	90	4.1	HEX**
ATTO 550	554	120000	576	80	3.6	TAMRA**, Cy3***
ATTO 565	563	120000	592	90	4.0	Cy3.5***, ROX**
ATTO Rho3B	565	120000	592	50	1.5	
ATTO Rho11	571	120000	595	80	4.0	ROX**
ATTO Rho12	576	120000	601	80	4.0	
ATTO Thio12	579	110000	609	15	2.0	
ATTO Rho101	586	120000	610	80	4.2	
ATTO 590	594	120000	624	80	3.7	Alexa 594*, Texas Red*
ATTO Rho13	600	120000	625	80	3.9	
ATTO 594	601	120000	627	85	3.9	Alexa 594*
ATTO 610	615	150000	634	70	3.2	
ATTO 620	619	120000	643	50	2.9	
ATTO Rho14	625	140000	646	80	3.7	Alexa 633*
ATTO 633	629	130000	657	64	3.3	Alexa 633*
ATTO 647	645	120000	669	20	2.4	Cy5***, Alexa 647*
ATTO 647 N	644	150000	669	65	3.5	Cy5***, Alexa 647*
ATTO 655	663	125000	684	30	1.8	Cy5***, Alexa 647*
ATTO Oxa12	663	125000	684	30	1.8	
ATTO 665	663	160000	684	60	2.9	
ATTO 680	680	125000	700	30	1.7	Cy5.5***
ATTO 700	700	120000	719	25	1.6	Cy5.5***
ATTO 725	729	120000	752	10	0.5	
ATTO 740	740	120000	764	10	0.6	

ATTO Fluorescence Quenchers (p. 62)

ATTO Large Stokes-Shift Dyes (p. 66)

40000

661 30

Label	λ_{abs} , nm	$\epsilon_{ ext{max}}$, M-1 cm-1	Quenching Range, nm	Label	$^{\lambda_{abs}}$,	$^{\rm E}_{\rm max}$, M $^{-1}$ Cm $^{-1}$	λ _{fl} , nm	η _{fl} , %
ATTO 540Q	542	105000	500 - 565	ATTO 390	390	24000	479	90
ATTO 580Q	586	110000	535 - 610	ATTO 425	436	45000	484	90
ATTO 612Q	615	115000	555 - 640	ATTO 465	453	75000	508	75
				ATTO LS-Dye	Series	New		
				ATTO 430LS	433	32000	547	65

ATTO Triplet Labels

ATTO Redox Label (p. 61)

ATTO 490LS 496

Label	λ_{abs} , nm	$\epsilon_{\rm max}$, M ⁻¹ cm ⁻¹	λ _{fl} , nm	η _τ , %	Label	λ_{abs} , nm	ε _{max} , M ⁻¹ cm ⁻¹
ATTO 465	453	75000	508	10	ATTO MB2	658	110000
ATTO 495	495	80000	527	10			
ATTO Thio12	579	110000	609	20			

λ_{abs}	longest-wavelength absorption maximum
ε_{max}	molar decadic extinction coefficient at the longest-wavelength absorption maximum
$\lambda_{_{fl}}$	fluorescence maximum
η_{fl}	fluorescence quantum yield
$\boldsymbol{\tau}_{\text{fl}}$	real fluorescence decay time, $\tau_{\rm fl}$ = $\eta_{\rm fl} \times \tau_{\rm 0}$
τ_0	natural (radiative) fluorescence decay time
$\eta_{\scriptscriptstyleT}$	triplet quantum yield
CF ₂₆₀	$\text{CF}_{_{280}}$ = $\epsilon_{_{280}}$ / $\epsilon_{_{\text{max}}}.$ Correction factor used in calculation of degree of labeling (DOL) in case of dye-DNA conjugates.
CF ₂₈₀	${\rm CF_{280}} = \epsilon_{\rm 280} \ / \ \epsilon_{\rm max}. \ {\rm Correction \ factor \ used \ in \ calculation \ of \ degree \ of \ labeling \ (DOL) \ in case \ of \ dye-protein \ conjugates.}$

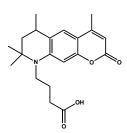
^{*} Trademark of Invitrogen Corporation, ** Trademark of Applera Corporation, *** Trademark of GE Healthcare Group Companies

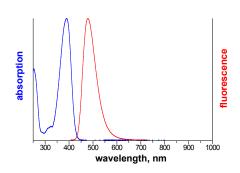
Optical properties of carboxy derivative

 $\lambda_{abs} = 390 \text{ nm}$

 $\varepsilon_{max} = 2.4 \times 10^4 \, \text{M}^{-1} \, \text{cm}^{-1}$

 $\lambda_{\rm fl}$ = 479 nm


n_{ff} = 90 %


 $CF_{260} = 0.52$

= 5.0 ns $CF_{280} = 0.08$

Features:

- · High fluorescence yield
- Large Stokes-shift
- Moderately hydrophilic
- · Coumarin derivative, uncharged

Modification	MW, g/mol	MH⁺, g/mol	Order 1 mg	Code 5 mg
carboxy	343	344	AD 390-21	AD 390-25
NHS-ester	440	441	AD 390-31	AD 390-35
maleimide	466	466	AD 390-41	AD 390-45
streptavidin			AD 390-61	AD 390-65
biotin	654	654	AD 390-71	AD 390-75
phalloidin	1113	1113	AD 390-81*	AD 390-82**
amine	500	386	AD 390-91	AD 390-95
azide <i>new</i>	544	544	AD 390-101	AD 390-105
iodoacetamide	553	554	AD 390-111	AD 390-115
alkyne	495	381	AD 390-141	AD 390-145

* 10 nmol **20 nmol

ATTO 425

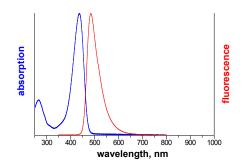
Optical properties of carboxy derivative

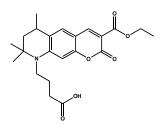
 $\lambda_{abs} = 436 \text{ nm}$

 $\varepsilon_{max} = 4.5 \times 10^4 \, \text{M}^{-1} \, \text{cm}^{-1}$

 $\lambda_{\rm fl}$ = 484 nm

J_{fl} = 90 %


= 3.6 ns


 $CF_{260} = 0.27$

 $CF_{280} = 0.23$

Features:

- · High fluorescence yield
- · Large Stokes-shift
- · Moderately hydrophilic
- Coumarin derivative, uncharged

Modification	MW,	MH⁺,	Order	Code
Woullication	g/mol	g/mol	1 mg	5 mg
carboxy	401	402	AD 425-21	AD 425-25
NHS-ester	499	499	AD 425-31	AD 425-35
maleimide	524	524	AD 425-41	AD 425-45
streptavidin			AD 425-61	AD 425-65
biotin	712	712	AD 425-71	AD 425-75
phalloidin	1171	1172	AD 425-81*	AD 425-82**
amine <i>new</i>	558	444	AD 425-91	AD 425-95
azide <i>new</i>	602	602	AD 425-101	AD 425-105

* 10 nmol **20 nmol

ATTO 488

ATTO 465

 $CF_{260} = 1.12$

 $CF_{280} = 0.54$

Optical properties of carboxy derivative

= 501 nm

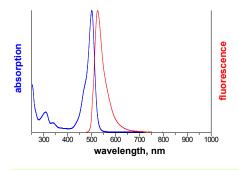
 $= 9.0 \times 10^4 M^{-1} cm^{-1}$

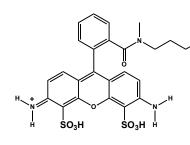
= 523 nm

= 80 %

- · Very little aggregation
- applications and high-resolution microscopy

 $= 4.1 \, \text{ns}$

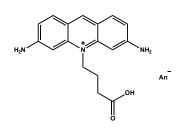

Features:

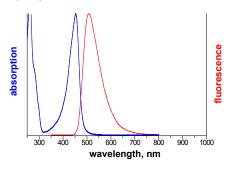

- · High fluorescence yield
- High photostability
- Very hydrophilic
- · Excellent water solubility

 $CF_{260} = 0.25$

 $CF_{280} = 0.10$

Highly suitable for single-molecule


Modification	MW,	Μ⁺,	, Order Code	
Modification	g/mol	g/mol	1 mg	5 mg
carboxy	804	590	AD 488-21	AD 488-25
NHS-ester	981	687	AD 488-31	AD 488-35
maleimide	1067	712	AD 488-41	AD 488-45
streptavidin			AD 488-61	AD 488-65
biotin	1191	900	AD 488-71	AD 488-75
phalloidin	1473	1359	AD 488-81*	AD 488-82**
amine	860	632	AD 488-91	AD 488-95
azide	904	790	AD 488-101	AD 488-105
iodoacetamide	914	800	AD 488-111	AD 488-115
alkyne	741	627	AD 488-141	AD 488-145


*	10	nmol	**20	nmol
	10	HILIOL	20	HILLIOL

Features:

- · High fluorescence yield
- · Large Stokes-shift in aqueous solution
- · High triplet yield, intense phosphorescence in solid matrix
- Hydrophilic
- · Cationic dye derived from well-known Acriflavine

 $\tau_{_{fl}}$

Modification	MW,	M⁺,	Order Code	
Wiodification	g/mol	g/mol	1 mg	5 mg
carboxy	396	296	AD 465-21	AD 465-25
NHS-ester	493	393	AD 465-31	AD 465-35
maleimide	518	418	AD 465-41	AD 465-45
streptavidin			AD 465-61	AD 465-65
biotin	706	606	AD 465-71	AD 465-75

Optical properties of carboxy derivative

453 nm

= 508 nm

= 75 %

= 10 %

5.0 ns

 $= 7.5 \times 10^4 \,\mathrm{M}^{-1} \,\mathrm{cm}^{-1}$

Other conjugates with phalloidin etc. on request.

ATTO 514

ATTO 495

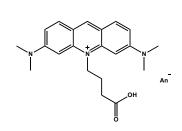
Optical properties of carboxy derivative

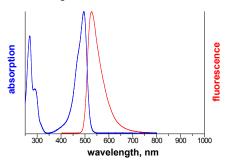
495 nm

 $= 8.0 \times 10^4 M^{-1} cm^{-1}$

527 nm

20 %


 $CF_{260} = 0.57$ 10 %


 $CF_{280} = 0.39$

 $= 1.0 \, \text{ns}$

Features:

- · High triplet yield
- · Phosphorescent in solid matrix
- · Penetrates the membrane of living cells
- · Moderately hydrophilic
- · Cationic dye derived from well-known Acridine Orange

Modification	MW, g/mol	M +, g/mol	Order 1 mg	Code 5 mg
carboxy	452	352	AD 495-21	AD 495-25
NHS-ester	549	449	AD 495-31	AD 495-35
maleimide	574	474	AD 495-41	AD 495-45
biotin	762	662	AD 495-71	AD 495-75

Other conjugates with phalloidin etc. on request.

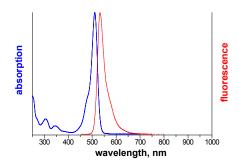
Optical properties of carboxy derivative

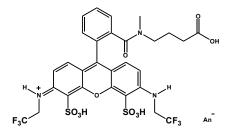
= 511 nm

= $1.15 \times 10^5 \,\mathrm{M}^{-1} \,\mathrm{cm}^{-1}$

= 533 nm

= 85 %


 $= 3.9 \, \text{ns}$


 $CF_{260} = 0.21$ $CF_{280} = 0.08$

Features:

- · High fluorescence yield
- High photostability
- Very hydrophilic
- · Excellent water solubility

- · Very little aggregation
- Highly suitable for single-molecule applications and high-resolution microscopy

Modification	MW,	M⁺,	Order Code		
Wodification	g/mol	g/mol	1 mg	5 mg	
carboxy	868	754	AD 514-21	AD 514-25	
NHS-ester	1111	851	AD 514-31	AD 514-35	
maleimide	990	876	AD 514-41	AD 514-45	
streptavidin			AD 514-61	AD 514-65	
biotin	1178	1064	AD 514-71	AD 514-75	
phalloidin	1638	1523	AD 514-81*	AD 514-82**	
amine	1024	796	AD 514-91	AD 514-95	
azide	1068	954	AD 514-101	AD 514-105	
iodoacetamide	1078	964	AD 514-111	AD 514-115	
alkyne	905	791	AD 514-141	AD 514-145	

^{* 10} nmol **20 nmol

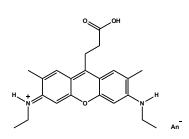
32 33 $CF_{260} = 0.13$

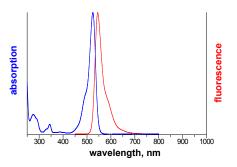
ATTO 520

Optical properties of carboxy derivative

 $\lambda_{aba} = 516 \text{ nm}$

 $\varepsilon_{max} = 1.1 \times 10^5 \, \text{M}^{-1} \, \text{cm}^{-1}$


 $\lambda_{\rm e}$ = 538 nm


ղ_ո = 90 %

= 3.6 ns $CF_{280} = 0.18$

Features:

- · High fluorescence yield
- · High thermal and photo-stability
- Moderately hydrophilic
- At pH > 7 reversible formation of colorless pseudobase
- · Cationic dye closely related to well-known Rhodamine 6G

Modification	MW, g/mol	M⁺, g/mol	Orde 1 mg	er Code 5 mg
carboxy	467	367	AD 520-21	AD 520-25
NHS-ester	564	464	AD 520-31	AD 520-35
maleimide	589	489	AD 520-41	AD 520-45
biotin	777	677	AD 520-71	AD 520-75
phalloidin	1250	1136	AD 680-81*	AD 680-82**
amine <i>new</i>	609	409	AD 520-91	AD 520-95
azide <i>new</i>	681	567	AD 520-101	AD 520-105

^{* 10} nmol **20 nmol

ATTO 532

Optical properties of carboxy derivative

 $\lambda_{aba} = 532 \text{ nm}$

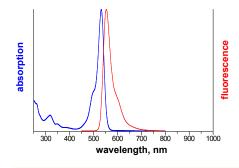
 $\varepsilon_{\text{max}} = 1.15 \times 10^5 \,\text{M}^{-1} \,\text{cm}^{-1}$

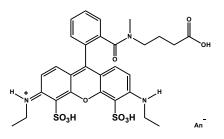
 $\lambda_{\rm fl}$ = 553 nm

n = 90 %

 $= 3.8 \, \text{ns}$

 $CF_{260} = 0.22$


 $CF_{280} = 0.11$



Features:

- · High fluorescence yield
- High photostability
- Very hydrophilic
- · Excellent water solubility

- · Very little aggregation
- Highly suitable for single-molecule applications and high-resolution microscopy

Modification	MW,	M⁺,	Order	Code
Wiodification	g/mol	g/mol	1 mg	5 mg
carboxy	765	646	AD 532-21	AD 532-25
NHS-ester	1081	743	AD 532-31	AD 532-35
maleimide	1063	768	AD 532-41	AD 532-45
streptavidin			AD 532-61	AD 532-65
biotin	1357	956	AD 532-71	AD 532-75
phalloidin	1530	1415	AD 532-81*	AD 532-82**
amine	916	688	AD 532-91	AD 532-95
azide	960	846	AD 532-101	AD 532-105
iodoacetamide	970	856	AD 532-111	AD 532-115
alkyne	797	683	AD 532-141	AD 532-145

^{* 10} nmol **20 nmol

 $CF_{260} = 0.22$

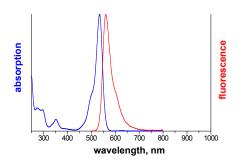
500 nm - 600 nm

ATTO Rho6G

Optical properties of carboxy derivative

535 nm

 $= 1.15 \times 10^5 \,\mathrm{M}^{-1} \,\mathrm{cm}^{-1}$


= 560 nm

90 %

 $CF_{280} = 0.19$ $= 4.1 \, \text{ns}$

Features:

- · High fluorescence yield
- · High thermal and photo-stability
- · Moderately hydrophilic
- · Cationic dye closely related to well-known Rhodamine 6G

Modification	MW,	M⁺,	Order Code	
Wodification	g/mol	g/mol	1 mg	5 mg
carboxy	614	514	AD Rho6G-21	AD Rho6G-25
NHS-ester	711	611	AD Rho6G-31	AD Rho6G-35
maleimide	750	636	AD Rho6G-41	AD Rho6G-45
biotin	938	824	AD Rho6G-71	AD Rho6G-75
phalloidin	1398	1283	AD Rho6G-81*	AD Rho6G-82**
amine <i>new</i>	784	556	AD Rho6G-91	AD Rho6G-95
azide	828	714	AD Rho6G-101	AD Rho6G-105
alkyne	651	551	AD Rho6G-141	AD Rho6G-145

* 10 nmol **20 nmol

Other conjugates with streptavidin etc. on request.

Optical properties of carboxy derivative

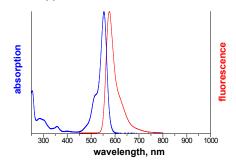
= 554 nm

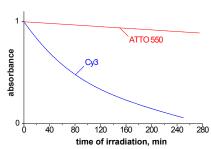
 $= 1.2 \times 10^5 M^{-1} cm^{-1}$

= 576 nm

= 80 %

= 3.6 ns


 $CF_{260} = 0.24$


 $CF_{280} = 0.12$

Features:

- · High fluorescence yield
- · High thermal and photo-stability
- Moderately hydrophilic
- Cationic dye
- · Supplied as mixture of three diastereomers

Modification	MW,	M⁺,	Order	Code
Woullication	g/mol	g/mol	1 mg	5 mg
carboxy	694	594	AD 550-21	AD 550-25
NHS-ester	791	691	AD 550-31	AD 550-35
maleimide	816	716	AD 550-41	AD 550-45
streptavidin			AD 550-61	AD 550-65
biotin	1005	904	AD 550-71	AD 550-75
phalloidin	1478	1363	AD 550-81*	AD 550-82**
amine	864	636	AD 550-91	AD 550-95
azide	908	794	AD 550-101	AD 550-105
iodoacetamide	918	804	AD 550-111	AD 550-115
alkyne	731	631	AD 550-141	AD 550-145

^{* 10} nmol **20 nmol

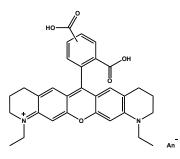
ATTO 565

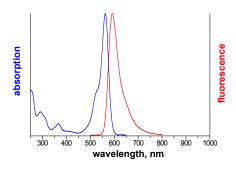
Optical properties of carboxy derivative

 $\lambda_{abs} = 563 \text{ nm}$

 $\varepsilon_{max} = 1.2 \times 10^5 \,\mathrm{M}^{-1} \,\mathrm{cm}^{-1}$

 $\lambda_{\rm fl}$ = 592 nm


n_{ff} = 90 %


 $CF_{260} = 0.34$

= 4.0 ns $CF_{280} = 0.16$

Features:

- · High fluorescence yield
- High thermal and photo-stability
- Supplied as mixture of two isomers with nearly identical properties
- Single isomer on request
- Highly suitable for single-molecule applications and high-resolution microscopy

Modification	MW,	M ⁺,	Order	Code
Wiodification	g/mol	g/mol	1 mg	5 mg
carboxy	611	511	AD 565-21	AD 565-25
NHS-ester	708	608	AD 565-31	AD 565-35
maleimide	733	633	AD 565-41	AD 565-45
streptavidin			AD 565-61	AD 565-65
biotin	922	821	AD 565-71	AD 565-75
phalloidin	1394	1280	AD 565-81*	AD 565-82**
amine	781	553	AD 565-91	AD 565-95
azide	825	711	AD 565-101	AD 565-105
iodoacetamide	835	721	AD 565-111	AD 565-115
alkyne	648	548	AD 565-141	AD 565-145

* 10 nmol **20 nmol

ATTO Rho3B

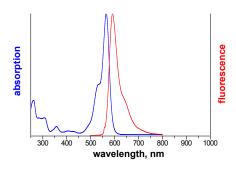
Optical properties of carboxy derivative

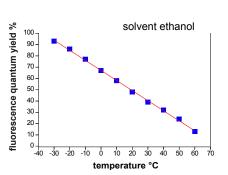
 $\lambda_{-} = 565 \text{ nm}$

 $\varepsilon_{\text{max}} = 1.2 \times 10^5 \,\text{M}^{-1} \,\text{cm}^{-1}$

 $\lambda_a = 592 \text{ nm}$

= 50 % (in ethanol, 20°C)


 $CF_{260} = 0.28$


 $= 1.5 \, \text{ns}$

 $CF_{280} = 0.14$

Features:

- · Fluorescence yield strongly dependent on temperature
- · High thermal and photo-stability
- Moderately hydrophilic
- · Cationic dye closely related to well-known Rhodamine B

Modification	MW,	M ⁺,	Order Code	
Wibulication	g/mol	g/mol	1 mg	5 mg
carboxy	642	542	AD Rho3B-21	AD Rho3B-25
NHS-ester	739	639	AD Rho3B-31	AD Rho3B-35
maleimide	764	664	AD Rho3B-41	AD Rho3B-45
biotin	966	852	AD Rho3B-71	AD Rho3B-75

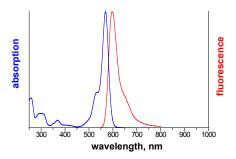
ATTO Rho11

Optical properties of carboxy derivative

= 571 nm

 $= 1.2 \times 10^5 \,\mathrm{M}^{-1} \,\mathrm{cm}^{-1}$

= 595 nm


80 %

 $CF_{260} = 0.25$

 $CF_{280} = 0.09$ $= 4.0 \, \text{ns}$

Features:

- · High fluorescence yield
- · High thermal and photo-stability
- Moderately hydrophilic
- · Cationic dye

Modification	MW,	Μ⁺,	Order Code	
Modification	g/mol	g/mol	1 mg	5 mg
carboxy	666	566	AD Rho11-21	AD Rho11-25
NHS-ester	763	663	AD Rho11-31	AD Rho11-35
maleimide	788	688	AD Rho11-41	AD Rho11-45
biotin	990	876	AD Rho11-71	AD Rho11-75

Other conjugates with streptavidin, phalloidin etc. on request.

ATTO Rho12

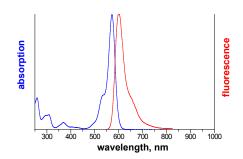
Optical properties of carboxy derivative

= 576 nm

 $= 1.2 \times 10^5 \,\mathrm{M}^{-1} \,\mathrm{cm}^{-1}$

= 601 nm

= 80 %


 $CF_{260} = 0.27$

= 4.0 ns

 $CF_{280} = 0.09$

Features:

- · High fluorescence yield
- · High thermal and photo-stability
- Cationic dye
- Supplied as mixture of three isomers with nearly identical properties

Modification	MW, g/mol	M⁺, g/mol	Order 1 mg	Code 5 mg
carboxy	750	650	AD Rho12-21	AD Rho12-25
NHS-ester	847	747	AD Rho12-31	AD Rho12-35
maleimide	872	772	AD Rho12-41	AD Rho12-45
biotin	1074	960	AD Rho12-71	AD Rho12-75

ATTO Thio12

Optical properties of carboxy derivative

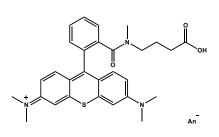
= 579 nm

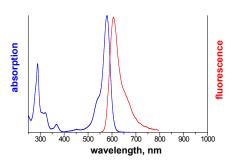
 $= 1.1 \times 10^5 \,\mathrm{M}^{-1} \,\mathrm{cm}^{-1}$

= 609 nm

= 15 %

 $CF_{260} = 0.10$


= 20 %


 $CF_{280} = 0.37$

= 2.0 ns

Features:

- · High triplet yield
- · High thermal stability
- · Moderate fluorescence yield
- · Cationic dye

Modification	MW, g/mol	M +, g/mol	Order 1 mg	Code 5 mg
carboxy	602	502	AD Thio12-21	AD Thio12-25
NHS-ester	699	599	AD Thio12-31	AD Thio12-35
maleimide	724	624	AD Thio12-41	AD Thio12-45
biotin	926	812	AD Thio12-71	AD Thio12-75

Other conjugates with streptavidin, phalloidin etc. on request.

ATTO Rho101

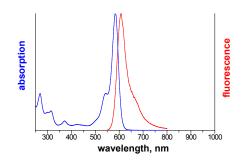
Optical properties of carboxy derivative

= 586 nm

 $= 1.2 \times 10^5 M^{-1} cm^{-1}$

= 610 nm

80 %


 $CF_{260} = 0.24$

= 4.2 ns

 $CF_{280} = 0.19$

Features:

- · High fluorescence yield
- · High thermal and photo-stability
- Rhodamine dye related to well-known Rhodamine 101

Modification	MW,	M ⁺,	Order Code	
woullication	g/mol	g/mol	1 mg	5 mg
 carboxy	703	590	AD Rho101-21	AD Rho101-25
NHS-ester	787	687	AD Rho101-31	AD Rho101-35
maleimide	812	712	AD Rho101-41	AD Rho101-45
biotin	1014	900	AD Rho101-71	AD Rho101-75

ATTO 590

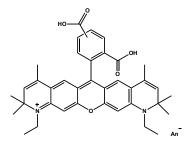
Optical properties of carboxy derivative

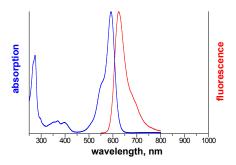
 $\lambda_{abs} = 594 \text{ nm}$

 $\varepsilon_{max} = 1.2 \times 10^5 \,\mathrm{M}^{-1} \,\mathrm{cm}^{-1}$

 $\lambda_{\rm e}$ = 624 nm

 $\eta_{\rm fl} = 80 \%$


 $CF_{260} = 0.42$


= 3.7 ns

 $CF_{280} = 0.44$

Features:

- · High fluorescence yield
- · High thermal and photo-stability
- Supplied as mixture of two isomers with nearly identical properties
- · Single isomer on request
- Highly suitable for single-molecule applications and high-resolution microscopy

Modification	MW,	M ⁺ ,	Order	
	g/mol	g/mol	1 mg	5 mg
carboxy	691	591	AD 590-21	AD 590-25
NHS-ester	788	688	AD 590-31	AD 590-35
maleimide	813	713	AD 590-41	AD 590-45
streptavidin			AD 590-61	AD 590-65
biotin	1002	901	AD 590-71	AD 590-75
phalloidin	1475	1360	AD 590-81*	AD 590-82**
amine#	917	689	AD 590-91	AD 590-95
azide	905	791	AD 590-101	AD 590-105
iodoacetamide	971	857	AD 590-111	AD 590-115
alkyne	742	628	AD 590-141	AD 590-145

linker: hexamethylendiamine * 10 nr

* 10 nmol **20 nmol

Optical properties of carboxy derivative

 $\lambda_{abs} = 601 \text{ nm}$

 $\varepsilon_{max} = 1.2 \times 10^5 \, \text{M}^{-1} \, \text{cm}^{-1}$

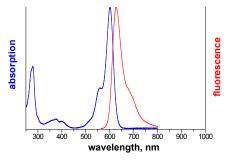
 $\lambda_{fi} = 627 \text{ nm}$

լ, = 85 %

 $= 3.9 \, \text{ns}$

 $CF_{260} = 0.26$

 $CF_{280} = 0.51$



ATTO 594

Features:

- · High fluorescence yield
- High photostability
- Very hydrophilic
- · Excellent water solubility

- · Very little aggregation
- Highly suitable for single-molecule applications and high-resolution microscopy
- · Net charge of -1

Madification	MW,	M ⁺ ,	Order	Code
Modification	g/mol	g/mol	1 mg	5 mg
carboxy	1137	806	AD 594-21	AD 594-25
NHS-ester	1389	903	AD 594-31	AD 594-35
maleimide	1358	928	AD 594-41	AD 594-45
streptavidin			AD 594-61	AD 594-65
biotin	1456	1116	AD 594-71	AD 594-75
phalloidin	1688	1575	AD 594-81*	AD 594-95**
amine	1076	848	AD 594-91	AD 594-95
azide	1119	1006	AD 594-101	AD 594-105
iodoacetamide	1129	1016	AD 594-111	AD 594-115
alkyne	956	843	AD 594-141	AD 594-145
		<u> </u>		

* 10 nmol **20 nmol

ATTO Rho13

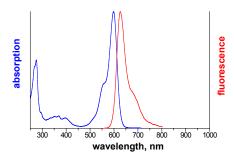
Optical properties of carboxy derivative

 $\lambda_{abs} = 600 \text{ nm}$

 $\varepsilon_{max} = 1.2 \times 10^5 \,\mathrm{M}^{-1} \,\mathrm{cm}^{-1}$

 $\lambda_{\rm g} = 625 \, \rm nm$

η, = 80 %


 $CF_{260} = 0.38$

 $= 3.9 \, \text{ns}$

 $CF_{280} = 0.44$

Features:

- · High fluorescence yield
- · High thermal and photo-stability
- Moderately hydrophilic
- Cationic dye

Modification	MW,	M ⁺,	Order Code	
Wiodification	g/mol	g/mol	1 mg	5 mg
carboxy	746	646	AD Rho13-21	AD Rho13-25
NHS-ester	843	743	AD Rho13-31	AD Rho13-35
maleimide	868	768	AD Rho13-41	AD Rho13-45
biotin	1070	956	AD Rho13-71	AD Rho13-75

Other conjugates with streptavidin, phalloidin etc. on request.

ATTO 610

Optical properties of carboxy derivative

 $\lambda_{aba} = 615 \text{ nm}$

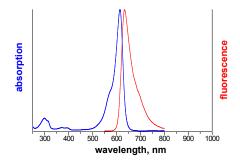
 $\varepsilon_{max} = 1.5 \times 10^5 \,\mathrm{M}^{-1} \,\mathrm{cm}^{-1}$

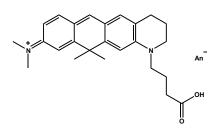
 $\lambda_a = 634 \text{ nm}$

n = 70 %

 $l_{fl} = 70\%$

= 3.2 ns


 $CF_{260} = 0.02$


 $CF_{280} = 0.05$

Features:

- · High fluorescence yield
- · High photostability
- · Moderately hydrophilic
- Stable at pH 2 8
- · Carbopyronin dye

Modification	MW,	M⁺,	Order Code	
Modification	g/mol	g/mol	1 mg	5 mg
carboxy	491	391	AD 610-21	AD 610-25
NHS-ester	588	488	AD 610-31	AD 610-35
maleimide	613	513	AD 610-41	AD 610-45
streptavidin			AD 610-61	AD 610-65
biotin	801	701	AD 610-71	AD 610-75

Other conjugates with phalloidin etc. on request.

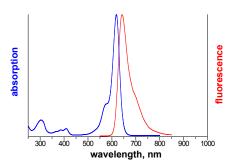
ATTO 620

Optical properties of carboxy derivative

= 619 nm

 $= 1.2 \times 10^5 \,\mathrm{M}^{-1} \,\mathrm{cm}^{-1}$

= 643 nm


50 %

 $CF_{260} = 0.05$ $CF_{280} = 0.07$

 $= 2.9 \, \text{ns}$

Features:

- · Fluorescence yield strongly dependent on temperature
- · High thermal and photo-stability
- Moderately hydrophilic
- · Cationic dye

Modification	MW,	M⁺,	Order Code	
Woullication	g/mol	g/mol	1 mg	5 mg
carboxy	612	512	AD 620-21	AD 620-25
NHS-ester	709	609	AD 620-31	AD 620-35
maleimide	734	634	AD 620-41	AD 620-45
streptavidin			AD 620-61	AD 620-65
biotin	923	822	AD 620-71	AD 620-75

Other conjugates with streptavidin, phalloidin etc. on request.

ATTO Rho14

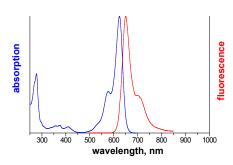
Optical properties of carboxy derivative

= 625 nm

 $= 1.4 \times 10^5 \,\mathrm{M}^{-1} \,\mathrm{cm}^{-1}$

= 646 nm

= 80 %


 $= 3.7 \, \text{ns}$

 $CF_{260} = 0.29$

 $CF_{280} = 0.46$

Features:

- · Extraordinarily high fluorescence yield
- · High thermal and photo-stability
- Cationic dye

Modification	MW, g/mol	M⁺, g/mol	Order 1 mg	Code 5 mg
carboxy	897	784	AD Rho14-21	AD Rho14-25
NHS-ester	981	881	AD Rho14-31	AD Rho14-35
maleimide	1020	906	AD Rho14-41	AD Rho14-45
biotin	1208	1094	AD Rho14-71	AD Rho14-75

ATTO 633

Optical properties of carboxy derivative

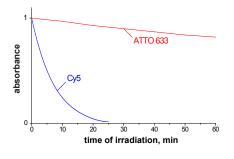
$$\lambda_{abs} = 629 \text{ nm}$$

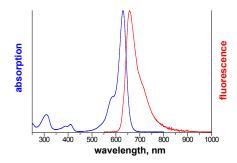
$$\varepsilon_{\text{max}} = 1.3 \times 10^5 \,\text{M}^{-1} \,\text{cm}^{-1}$$

$$\lambda_{\rm fl}$$
 = 657 nm

$$\eta_{\rm s} = 64 \%$$

$$CF_{260} = 0.05$$


$$= 3.3 \text{ ns}$$


$$CF_{280} = 0.06$$

Features:

- · High fluorescence yield
- · High thermal and photo-stability
- · Moderately hydrophilic
- · Cationic dye

Modification	MW,	Μ⁺,	Orde	r Code
Modification	g/mol	g/mol	1 mg	5 mg
carboxy	652	552	AD 633-21	AD 633-25
NHS-ester	749	649	AD 633-31	AD 633-35
maleimide	774	674	AD 633-41	AD 633-45
streptavidin			AD 633-61	AD 633-65
biotin	963	862	AD 633-71	AD 633-75
phalloidin	1436	1321	AD 633-81*	AD 633-82**
amine	822	594	AD 633-91	AD 633-95
azide	866	752	AD 633-101	AD 633-105
iodoacetamide	876	762	AD 633-111	AD 633-115
alkyne	689	589	AD 633-141	AD 633-145

* 10 nmol **20 nmol

ATTO 647

Optical properties of carboxy derivative

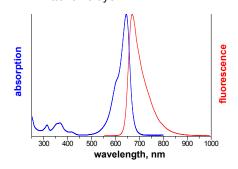
= 645 nm

 $= 1.2 \times 10^5 M^{-1} cm^{-1}$

= 669 nm

= 20 %

= 2.4 ns


 $CF_{260} = 0.08$

 $CF_{280} = 0.04$

Features:

- · High fluorescence yield
- · High photostability
- Very hydrophilic
- Stable at pH 2 8
- Zwitterionic dye

Modification	m MW, M⁺,		Order	Order Code	
Wiodification	g/mol	g/mol	1 mg	5 mg	
carboxy	593	593	AD 647-21	AD 647-25	
NHS-ester	811	690	AD 647-31	AD 647-35	
maleimide	829	715	AD 647-41	AD 647-45	
streptavidin			AD 647-61	AD 647-65	
biotin	1219	903	AD 647-71	AD 647-75	
phalloidin	1477	1363	AD 647-81*	AD 647-82**	

* 10 nmol **20 nmol

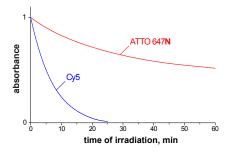
ATTO 647N

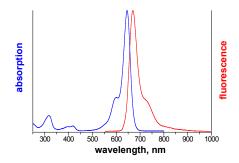
 $CF_{260} = 0.06$

Optical properties of carboxy derivative

$$\lambda_{abs} = 644 \text{ nm}$$

$$\varepsilon_{\text{max}} = 1.5 \times 10^5 \,\text{M}^{-1} \,\text{cm}^{-1}$$


$$\lambda_{\rm fl}$$
 = 669 nm


=
$$3.5 \text{ ns}$$
 $CF_{280} = 0.05$

Features:

- Extraordinarily high fluorescence yield
 Highly suitable for single-molecule
- · High thermal and photo-stability
- Excellent ozone resistance
- Moderately hydrophilic

- applications and high-resolution microscopy
- · Cationic dye, mixture of two isomers

Modification	MW,	M⁺,	Order Code	
Wiodification	g/mol	g/mol	1 mg	5 mg
carboxy	746	646	AD 647 N -21	AD 647 N -25
NHS-ester	843	743	AD 647 N -31	AD 647 N -35
maleimide	868	768	AD 647 N -41	AD 647 N -45
streptavidin			AD 647 N -61	AD 647 N -65
biotin	1057	956	AD 647 N -71	AD 647 N -75
phalloidin	1530	1415	AD 647 N -81*	AD 647 N -82**
amine	916	688	AD 647 N -91	AD 647 N -95
azide	960	846	AD 647 N -101	AD 647 N -105
iodoacetamide	970	856	AD 647 N -111	AD 647 N -115
alkyne	783	683	AD 647N-141	AD 647N-145

* 10 nmol **20 nmol

Optical properties of carboxy derivative

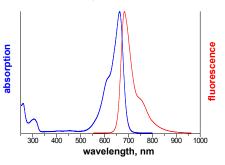
= 663 nm

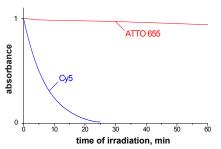
 $= 1.25 \times 10^5 \,\mathrm{M}^{-1} \,\mathrm{cm}^{-1}$

= 684 nm

30 %

= 1.8 ns




ATTO 655

Features:

- · High fluorescence yield
- · Excellent thermal and photo-stability
- · Excellent ozone resistance
- Very hydrophilic
- Zwitterionic dye

- · Highly suitable for single-molecule applications and high-resolution microscopy
- · Fluorescence quenching by guanine, tryptophan, etc.

Madification	MW,	M⁺,	Ordei	r Code
Modification	g/mol	g/mol	1 mg	5 mg
carboxy	634	528	AD 655-21	AD 655-25
NHS-ester	887	625	AD 655-31	AD 655-35
maleimide#	812	650	AD 655-41	AD 655-45
streptavidin			AD 655-61	AD 655-65
biotin	1204	838	AD 655-71	AD 655-75
phalloidin	1412	1297	AD 655-81*	AD 655-82**
amine	798	570	AD 655-91	AD 655-95
azide	842	728	AD 655-101	AD 655-105
iodoacetamide	852	738	AD 655-111	AD 655-115
alkyne	679	565	AD 655-141	AD 655-145

[#] also available with short linker: ATTO Oxa11. Information: info@atto-tec.com

^{* 10} nmol **20 nmol

ATTO Oxa12

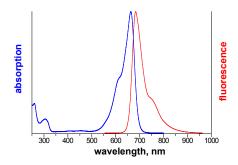
Optical properties of carboxy derivative

 $\lambda_{abs} = 663 \text{ nm}$

 $\varepsilon_{max} = 1.25 \times 10^5 \,\mathrm{M}^{-1} \,\mathrm{cm}^{-1}$

 $\lambda_{\rm fl}$ = 684 nm

 $\eta_{\rm fl} = 30 \%$


 $CF_{260} = 0.24$

= 1.8 ns

 $CF_{280} = 0.08$

Features:

- · High fluorescence yield
- · High thermal and photo-stability
- Lipophillic variety of ATTO 655
- · Good solubility in organic solvents of medium polarity
- · Cationic dye

Modification	MW,	M ⁺,	Order Code		
Wiodification	g/mol	g/mol	1 mg	5 mg	
carboxy	739	639	AD Oxa12-21	AD Oxa12-25	
NHS-ester	835	736	AD Oxa12-31	AD Oxa12-35	
maleimide	875	761	AD Oxa12-41	AD Oxa12-45	
biotin	1063	949	AD Oxa12-71	AD Oxa12-75	

Other conjugates with streptavidin, phalloidin etc. on request.

ATTO 665

Optical properties of carboxy derivative

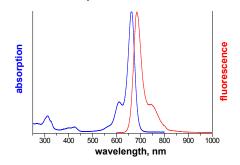
 $\lambda_{aba} = 663 \text{ nm}$

 $\varepsilon_{max} = 1.60 \times 10^5 \,\mathrm{M}^{-1} \,\mathrm{cm}^{-1}$

 $\lambda_n = 684 \text{ nm}$

n = 60 %

1 00 70


 $= 2.9 \, \text{ns}$

 $CF_{260} = 0.07$

 $CF_{280} = 0.06$

Features:

- · Extraordinarily high fluorescence yield
- · Excellent thermal and photo-stability
- Excellent ozone resistance
- · Moderately hydrophilic
- Cationic dye

Modification	MW, g/mol	M +, g/mol	Order Code 1 mg 5 mg	
carboxy	723	623	AD 665-21	AD 665-25
NHS-ester	820	720	AD 665-31	AD 665-35
maleimide	845	745	AD 665-41	AD 665-45
streptavidin			AD 665-61	AD 665-65
biotin	1046	933	AD 665-71	AD 665-75
phalloidin <i>new</i>	1507	1392	AD 665-81*	AD 665-782**
azide	937	823	AD 665-101	AD 665-105

* 10 nmol **20 nmol

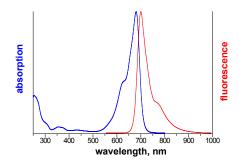
ATTO 680

Optical properties of carboxy derivative

680 nm $= 1.25 \times 10^5 \,\mathrm{M}^{-1} \,\mathrm{cm}^{-1}$

= 700 nm

30 %


 $CF_{260} = 0.30$

 $= 1.7 \, \text{ns}$

 $CF_{280} = 0.17$

Features:

- · High fluorescence yield
- · Excellent thermal and photo-stability
- Fluorescence quenching by guanine, tryptophan, etc.
- · Very hydrophilic
- Zwitterionic dye

Modification	MW, M⁺,		Order Code		
Woullication	g/mol	g/mol	1 mg	5 mg	
carboxy	631	526	AD 680-21	AD 680-25	
NHS-ester	828	623	AD 680-31	AD 680-35	
maleimide	1024	648	AD 680-41	AD 680-45	
streptavidin			AD 680-61	AD 680-65	
biotin	1123	836	AD 680-71	AD 680-75	
phalloidin	1410	1295	AD 680-81*	AD 680-82**	
amine <i>new</i>	796	568	AD 680-91	AD 680-95	
azide <i>new</i>	839	726	AD 680-101	AD 680-105	
iodoacetamide <i>new</i>	850	736	AD 680-111	AD 680-115	
alkyne <i>new</i>	677	563	AD 680-141	AD 680-145	

* 10 nmol **20 nmol

ATTO 700

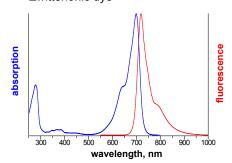
Optical properties of carboxy derivative

= 700 nm

 $= 1.2 \times 10^5 \,\mathrm{M}^{-1} \,\mathrm{cm}^{-1}$

= 719 nm

= 25 %


= 1.6 ns

 $CF_{260} = 0.26$

 $CF_{280} = 0.41$

- · High fluorescence yield
- · Excellent thermal and photo-stability
- · Fluorescence quenching by guanine, tryptophan, etc.
- Very hydrophilic
- Zwitterionic dye

Modification	MW, M⁺,		Order Code		
Woullication	g/mol	g/mol	1 mg	5 mg	
carboxy	575	566	AD 700-21	AD 700-25	
NHS-ester	837	663	AD 700-31	AD 700-35	
maleimide	971	688	AD 700-41	AD 700-45	
streptavidin			AD 700-61	AD 700-65	
biotin	973	876	AD 700-71	AD 700-75	
palloidin <i>new</i>	1450	1335	AD 700-81*	AD 700-82**	
amine	836	608	AD 700-91	AD 700-95	
azide <i>new</i>	880	766	AD 700-101	AD 700-105	
alkyne <i>new</i>	717	603	AD 700-141 AD 700		

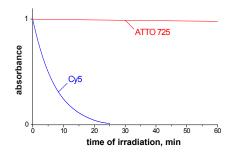
**20 nmol * 10 nmol

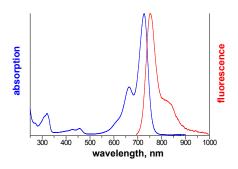
ATTO 725

Optical properties of carboxy derivative

 $\lambda_{abs} = 729 \text{ nm}$

 $\varepsilon_{max} = 1.2 \times 10^5 \,\mathrm{M}^{-1} \,\mathrm{cm}^{-1}$


 $\lambda_{\rm fl} = 752 \, \rm nm$


= 10 % $CF_{260} = 0.10$

= 0.5 ns $CF_{280} = 0.08$

Features:

- · Excellent photo-stability
- · Moderately hydrophilic
- Stable at pH 2 8
- · Cationic dye

Modification	MW, M⁺,		Order Code		
Widdiffication	g/mol	g/mol	1 mg	5 mg	
carboxy	516	416	AD 725-21	AD 725-25	
NHS-ester	613	513	AD 725-31	AD 725-35	
maleimide	638	538	AD 725-41	AD 725-45	
biotin	826	726	AD 725-71	AD 725-75	
phalloidin <i>new</i>	1299	1185	AD 725-81*	AD 725-82**	

* 10 nmol **20 nmol

ATTO 740

Optical properties of carboxy derivative

 $\lambda_{abs} = 740 \text{ nm}$

 $\varepsilon_{max} = 1.2 \times 10^5 \, \text{M}^{-1} \, \text{cm}^{-1}$

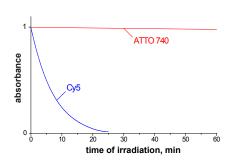
 $\lambda_n = 764 \text{ nm}$

n = 10 %

I_{fl} – 10 /0

 $t_{\rm fl} = 0.6 \, \rm ns$

 $CF_{260} = 0.11$


 $CF_{280} = 0.10$

Features:

- · Excellent photo-stability
- · Moderately hydrophilic
- Stable at pH 2 8
- Cationic dye

Modification	MW,	M⁺,	Order	Code
Wiodification	g/mol	g/mol	1 mg	5 mg
carboxy	568	468	AD 740-21	AD 740-25
NHS-ester	665	565	AD 740-31	AD 740-35
maleimide	690	590	AD 740-41	AD 740-45
biotin	879	778	AD 740-71	AD 740-75
phalloidin <i>new</i>	1352	1237	AD 740-81*	AD 740-82**
azide	782	668	AD 740-101	AD 740-105

* 10 nmol **20 nmol

ATTO MB2

Redox Label

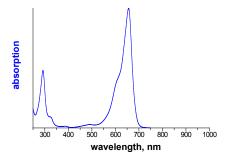
A dye, well-known in biochemical and medical research, is *Methylene Blue* (p.18-19). It has very interesting redox properties: The dye, normally deep blue in color, is converted by mild reducing agents to its so-called *leuko*-form, which is colorless. Since this reaction is reversible, the blue color reappears on oxidation, e.g. by oxygen (air). These interconversions can be catalyzed enzymatically.

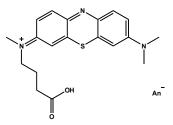
Methylene Blue as such cannot be coupled to biomolecules, because it lacks the necessary reactive groups. However, **ATTO-TEC** now offers **ATTO MB2**, a derivative of Methylene Blue. The dye is available as NHS-ester or maleimide for coupling to amino- or thiol groups, respectively. **ATTO MB2** is also supplied as biotin conjugate for direct coupling to avidin or streptavidin.

Optical properties of carboxy derivative

 $\lambda_{abs} = 658 \text{ nm}$

 $\varepsilon_{max} = 1.00 \times 10^5 \,\mathrm{M}^{-1} \,\mathrm{cm}^{-1}$


 $CF_{260} = 0.11$


 $CF_{280} = 0.28$

Features:

- · High thermal and photo-stability
- Redox Label
- Moderately hydrophilic
- Cationic dye

Modification	MW, g/mol	M ⁺, g/mol	Order Code		
Wodification			1 mg	5 mg	
carboxy	392	356	AD MB2-21	AD MB2-25	
NHS-ester	553	453	AD MB2-31	AD MB2-35	
maleimide	591	478	AD MB2-41	AD MB2-45	
biotin	779	666	AD MB2-71	AD MB2-75	

Fluorescence Quenchers

ATTO-TEC

Fluorescence Quenchers

ATTO 540Q

Optical properties of carboxy derivative

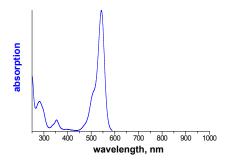
 $\lambda_{aba} = 542 \text{ nm}$

$$\varepsilon_{max} = 1.05 \times 10^5 \,\mathrm{M}^{-1} \,\mathrm{cm}^{-1}$$

 $CF_{260} = 0.22$ $CF_{280} = 0.24$

Förster resonance energy transfer (FRET) from an excited dye molecule (donor) to another nearby dye molecule (acceptor) leads to deactivation of the donor, i.e. it no longer fluoresces: Its fluorescence is *quenched*. The process of FRET depends, among other factors, on the absorption spectrum of the acceptor, as was discussed in some detail on p. 10-11. If the acceptor is *fluorescent* itself, it will emit light just the same, as if it had been excited directly (without utilisation of the donor). However, if the acceptor is *non-fluorescent*, it will merely accept excitation energy from the donor, yet not produce any fluorescence by its own. Such acceptors are called "fluorescence quenchers".

Fluorescence quenchers reduce the fluorescence intensity of the donor dye according to the formulas given on p. 10-11. The Förster-radius R_0 is determined by the overlap between fluorescence spectrum of the donor and absorption spectrum of the acceptor (quencher). For efficient quenching the absorption region of the quencher must overlap well with the fluorescence spectrum of the donor.


ATTO-TEC provides quenchers covering most of the relevant visible spectrum. Their properties are outlined on p. 63-65. The Förster-radii $R_{\scriptscriptstyle 0}$ for combinations with fluorescent ATTO-labels as donors are presented in the table on p. 12-13.

Note:

- The fluorescence of dyes may be quenched also by mechanisms entirely different than FRET. For example, the fluorescence of ATTO 655, ATTO 680, and ATTO 700 is quenched very efficiently by guanosine, tryptophan and related compounds. This process is based on electron transfer and requires direct contact between excited dye molecule and quenching agent.
- The ATTO-TEC quenchers ATTO 540Q etc. are designed to quench exclusively by the FRET mechanism. Thus, if there is no spectral overlap, no quenching takes place - in contrast to some other quenchers on the market!

Features:

- · High thermal and photo-stability
- Moderately hydrophilic
- · Cationic rhodamine dye

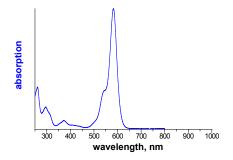
Modification	MW, M+,		Order Code		
	g/mol	g/mol	1 mg	5 mg	
carboxy	659	559 AD 540Q-21		AD 540Q-25	
NHS-ester	756	656	AD 540Q-31	AD 540Q-35	
maleimide	781	681	AD 540Q-41	AD 540Q-45	
streptavidin			AD 540Q-61	AD 540Q-65	
biotin	970	869	AD 540Q-71	AD 540Q-75	
azide	873	759	AD 540Q-101	AD 540Q-105	

Other conjugates with phalloidin etc. on request.

ATTO 580Q

Optical properties of carboxy derivative

$$\lambda_{abs}$$
 = 586 nm


$$\varepsilon_{max} = 1.1 \times 10^5 \, \text{M}^{-1} \, \text{cm}^{-1}$$

$$CF_{260} = 0.36$$

$$CF_{280} = 0.13$$

Features:

- · High thermal and photo-stability
- Moderately hydrophilic
- · Cationic dye related to rhodamines
- Supplied as mixture of three isomers

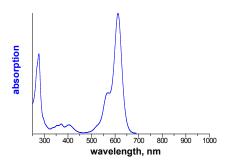
Madification	MW,	M⁺,	Order Code		
Modification	g/mol	g/mol	1 mg	5 mg	
carboxy	795	695	AD 580Q-21	AD 580Q-25	
NHS-ester	892	792	AD 580Q-31	AD 580Q-35	
maleimide	917	817	AD 580Q-41	AD 580Q-45	
biotin	1106	1005	AD 580Q-71	AD 580Q-75	

Other conjugates with streptavidin, phalloidin etc. on request.

ATTO 612Q

Optical properties of carboxy derivative

= 615 nm


$$\varepsilon_{max} = 1.15 \times 10^5 \,\mathrm{M}^{-1} \,\mathrm{cm}^{-1}$$

 $CF_{260} = 0.35$

 $CF_{280} = 0.57$

- · High thermal and photo-stability
- Moderately hydrophilic
- · Cationic dye related to rhodamines

Modification	MW, M +, g/mol g/mol		Order Code		
Woullication			1 mg	5 mg	
carboxy	791	691	AD 612Q-21	AD 612Q-25	
NHS-ester	888	788	AD 612Q-31	AD 612Q-35	
maleimide	913	813	AD 612Q-41	AD 612Q-45	
streptavidin			AD 612Q-61	AD 612Q-65	
biotin	1102	1001	AD 612Q-71	AD 612Q-75	

Other conjugates with phalloidin etc. on request.

Dyes with Large Stokes-Shift

On excitation of a dye molecule a reorientation of the π -electron system takes place. This occurs extremely fast (faster than picoseconds). Due to the new charge distribution about the dye molecule the surrounding solvent molecules also move towards new equilibrium positions. As a consequence the energy of the entire system (excited dye molecule plus solvent) is lowered quickly, and the photons emitted have a lower energy than those needed for excitation. In other words: The fluorescence occurs at *longer* wavelengths than the excitation. The wavelength difference between fluorescence maximum and the corresponding absorption maximum is called *Stokes-shift*. With typical dyes the Stokes-shift amounts to 20-30 nm.

On excitation of dyes with highly *unsymmetrical* π -electron systems the dipole moment may change drastically. The ensuing strong reorientation of solvent molecules leads to an unusually large Stokes-shift, in particular in polar solvents like water and ethanol. As the non-radiative decay of the excited state is also enhanced by the solvent reorientation, the fluorescence quantum yield of such compounds is severely reduced in aqueous solutions. However, there are a few exceptions to this rule: Coumarin derivatives like **ATTO 390** and **ATTO 425** show a remarkably large Stokes-shift of about 90 and 50 nm, respectively, and yet fluoresce with a quantum yield of 90 % in water (table p. 26).

Even more remarkable is the dye **ATTO 465**. In spite of its symmetrical structure it has a large Stokes-shift of 55 nm in aqueous solution.

Optical Properties in PBS

Label	ε _{max} , M⁻¹ cm⁻¹	λ_{abs} ,	$\lambda_{_{\mathbf{fl}}}$,	Stokes-Shift,	η_{fl} , %	τ_{fl} , ns	Page
ATTO 390	24000	390	479	89	90	5.0	28
ATTO 425	45000	436	484	48	90	3.5	29
ATTO 465	75000	453	508	55	75	5.0	30

NEW ATTO LS-Dye Series NEW

ATTO-TEC's latest research led to new dyes featuring an extraordinary large Stokes-shift of up to **165** nm in aqueous solution. Thus the emission spectrum is almost completely separated from the absorption spectrum. The large fluorescence shift makes these dyes highly suitable for multicolor experiments. Fluorescence bleed-through between detection channels is minimized.

The dyes, **ATTO 430LS** and **ATTO 490LS**, are very hydrophilic and show excellent water solubility. They exhibit strong fluorescence. In contrast to many other commercial fluorophores, the fluorescence efficiency on conjugation to biomolecules (e.g. proteins) remains exceptionally high, even at a high degree of labeling (DOL).

ATTO 430LS

Optical properties of carboxy derivative

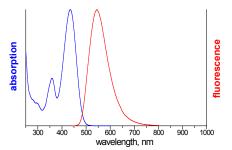
433 nm

3.2 x 10⁴ M⁻¹ cm⁻¹

547 nm

65 %

 $CF_{260} = 0.41$


 $= 4.0 \, \text{ns}$

 $CF_{280} = 0.26$

Features:

- Extraordinary large Stokes-shift
- · High fluorescence yield
- Highly fluorescent even after conjugation
- · Very hydrophilic
- · Excellent water solubility

- · Very little aggregation
- · Highly suitable for single-molecule applications and high-resolution microscopy

Modification MW,		MH⁺,	Order Code		
Woullication	g/mol	g/mol	1 mg	5 mg	
carboxy	589	567	AD 430LS-21	AD 430LS-25	
NHS-ester	686	664	AD 430LS-31	AD 430LS-35	
maleimide	711	689	AD 430LS-41	AD 430LS-45	
streptavidin			AD 430LS-61	AD 430LS-65	
phalloidin	1359	1337	AD 430LS-81*	AD 430LS-82**	
azide	789	767	AD 430LS-101	AD 430LS-105	

^{* 10} nmol **20 nmol

Optical properties of carboxy derivative

= 496 nm

 $= 4.0 \times 10^4 M^{-1} cm^{-1}$

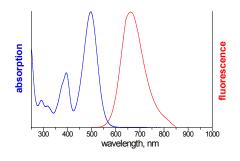
= 661 nm

30 %

= 2.6 ns

 $CF_{260} = 0.37$

 $CF_{280} = 0.18$



Features:

ATTO-TEC

- Extraordinary large Stokes-shift
- · High fluorescence yield
- Highly fluorescent even after conjugation
- Very hydrophilic
- · Excellent water solubility

- · Very little aggregation
- Highly suitable for single-molecule applications and high-resolution microscopy

Modification	MW,	M⁺,	Order Code		
Woullication	g/mol	g/mol	1 mg	5 mg	
carboxy	696	674	AD 490LS-21	AD 490LS-25	
NHS-ester	793	771	AD 490LS-31	AD 490LS-35	
maleimide	818	796	AD 490LS-41	AD 490LS-45	
streptavidin			AD 490LS-61	AD 490LS-65	
phalloidin	1466	1444	AD 490LS-81*	AD 490LS-82**	
azide	896	874	AD 490LS-101	AD 490LS-105	

^{* 10} nmol **20 nmol

Customized Labels and Products

In addition to the products described in this catalogue **ATTO-TEC** offers on request dyes and labels taylored to the special needs of its customers. The following examples may illustrate the possibilities.

Derivatives of ATTO-Labels

Linker

In most ATTO-labels the reactive group (NHS-ester etc.) is connected with the fluorophore by a linker consisting of a 4-atom flexible chain. For most applications this has proven to be very suitable and practical. However, if your particular experiment requires a linker of different length, rigidity, or other special feature, - most likely we are able to provide it.

Reactive Group and Conjugates

N-hydroxysuccinimide (NHS) ester and maleimide are the most common reactive groups for coupling to amine and thiol, respectively. However, for other substrate functionalities it is necessary that the label carry an entirely different reactive group: **ATTO-TEC** accordingly provides labels with amine-, hydrazide-, and biotin coupling groups, azides and alkynes for "click-chemistry" as well as many others. Such derivatives are found generally under the heading of the dye in question. If a particular ATTO-dye derivative or conjugate is not listed in this catalogue, it might still be available on request. Send your inquiry to info@atto-tec.com.

Solubility, Charges

On customer request ATTO-dyes can be rendered very hydrophobic or else very hydrophilic and thus become compatible with a particular solvent, surface, or biochemical environment. Furthermore the electrical charge of a label can be adapted to achieve the desired interaction with a biomolecule or simply to obtain a special migration behaviour in electrophoresis.

Special Dyes

New Chromophores

Most labels described in this catalogue are based on dyes patented by **ATTO-TEC**. These products have been selected for optimum value to our customers, and we at **ATTO-TEC** are committed to provide these dyes and their derivatives for years to come. However, continuous scientific progress and the invention of ever new applications require the development of novel dyes and derivatives. Therefore, if you need a fluorescent label with special properties, not found in the catalogue, please let us know. We will try to help.

Recommended Procedures for Labeling

Introduction

ATTO-TEC offers a large variety of high-quality dyes for labeling amino and thiol groups. ATTO reactive dyes cover the spectral region from 350 nm in the UV to 750 nm in the NIR.

The most commonly used amine-reactive dye derivatives are N-hydroxysuccinimidyl(NHS)-esters. NHS-esters readily react with amine-modified oligonucleotides or amino groups of proteins, i.e. the ϵ -amino groups of lysines or the amine terminus, forming a chemically stable amide bond between the dye and the protein or oligo. However, the amino group ought to be unprotonated to be reactive. Therefore the pH of the solution must be adjusted sufficiently high to obtain a high concentration of unprotonated amino groups. On the other hand, the NHS-ester also reacts with the hydroxyl ions in the solution to yield free dye, which is no longer reactive. As the rate of this hydrolysis increases with the concentration of hydroxyl ions, the pH should be kept as low as possible. Buffering the solution at pH 8.3 has been found to be a good compromise between the contradicting requirements.

For labeling thiol groups the most popular and commonly used dye derivatives are maleimides. ATTO-maleimides react with thiol groups of proteins to form a stable thio-ether bond.

Labeling Proteins with Amine-Reactive ATTO-Labels (NHS-Esters)

ATTO NHS-esters readily react with amino groups of proteins. The optimum pH range for NHS-ester coupling is pH 8.0-9.0. At this pH amino groups of proteins, i.e. the ϵ -amino groups of lysines are unprotonated to a high degree and highly reactive towards the dve-NHS-ester.

Required Materials

- Solution A: PBS buffer (Phosphate-Buffered Saline, pH 7.4): Dissolve 8 g NaCl, 0.2 g KCl, 1.44 g Na₂HPO₄ · 2 H₂O, and 0.24 g KH₂PO₄, in 1 liter distilled water.
- **Solution B**: 0.2 M sodium bicarbonate solution, adjusted to pH 9.0 with 2 M sodium hydroxide.
- Solution C: To 20 parts of Solution A add 1 part of Solution B to obtain a labeling buffer of pH 8.3. Kept in an air-tight bottle, this solution will be stable for a long period of time.
- **Solution D**: Dissolve 1.0 mg of dye NHS-ester in 50 200 µl of anhydrous, amine-free DMSO or DMF. Due to the high quality of ATTO NHS-esters such solutions are stable for a long period of time (freeze and protect from light when not in use). However, it may be difficult to avoid humidity entering a solution in continuous use. In the presence of water NHS-esters readily hydrolyze and become non-reactive. Hence we advise to freshly prepare, whenever possible, the dye NHS-ester solution immediately before starting the labeling reaction.
- Gel filtration column filled with Sephadex G-25 or equivalent.

Conjugate Preparation

- Dissolve 1 5 mg of protein in 1 ml of Solution C. Protein solutions must be free of any amine-containing substances such as tris-(hydroxymethyl)-aminomethane (TRIS), free amino acids or ammonium ions. Antibodies that are dissolved in amine containing buffers should be dialyzed against Solution A, and the desired coupling pH of 8.3 will be obtained by the procedure given above for Solution C. The presence of sodium azide in low concentration (< 3 mM) will not interfere with the labeling reaction.</p>
- To obtain a degree of labeling (DOL, dye-to-protein ratio) of 2 3 add, while gently shaking, a threefold molar excess of reactive dye (Solution D) to the protein solution. Variations due to different reactivities of both the protein and the labeling reagent may occur. This may necessitate optimization of the dye-to-protein ratio used in the reaction in order to obtain the desired DOL. To increase the degree of labeling a higher ratio of NHS-ester to protein has to be used and vice versa.

Labeling Procedures

 Incubate the reaction mixture protected from light for up to 1 hour at room temperature. In most cases the labeling reaction will be complete within 5 – 10 minutes.

Conjugate Purification - Removal of Unbound Dye

- Due to an unavoidable side reaction part of the applied dye NHS-ester will hydrolyze during the labeling reaction and must be removed from the protein conjugate. We recommend using a Sephadex G-25 (or equivalent) gel filtration column (1 2 cm diameter and 10 20 cm length; for very hydrophilic dyes, e. g. ATTO 488, ATTO 532, ATTO 594, a 30 cm column is preferable) for separation of dye-protein conjugate from free dye.
- Preequilibrate the column with Solution A.
- Elute the dye-protein conjugate using **Solution A**.
- The first colored and fluorescent zone to elute will be the desired dye-protein conjugate. A second colored and fluorescent, but slower moving zone contains the unbound free dye (hydrolyzed NHS-ester).
- To prevent denaturation of the conjugate after elution, bovine serum albumin (BSA) or another stabilizer may be added.

Labeling Proteins with Thiol-Reactive ATTO-Labels (Maleimides)

ATTO maleimides readily react with thiol groups of proteins. The optimum acidity for thiol modification with maleimides is pH 7.0-7.5. At this pH the thiol (sulfhydryl) group is deprotonated to a sufficient degree and readily reacts with the dye-maleimide.

Required Materials

Solution A: PBS buffer (Phosphate-Buffered Saline, pH 7.4): Dissolve 8 g NaCl, 0.2 g KCl, 1.44 g Na₂HPO₄ · 2 H₂O, and 0.24 g KH₂PO₄, in 1 liter distilled water.

- **Solution E**: Dissolve 1.0 mg of dye-maleimide in 50 200 µl of anhydrous, amine-free DMSO or DMF. Due to the high quality of ATTO maleimides such solutions are stable for a long period of time (freeze and protect from light when not in use). However, it may be difficult to avoid humidity entering a solution in continuous use. The maleimide moiety may hydrolyze and become non-reactive. Hence, we advise to freshly prepare, whenever possible, the dye-maleimide solution immediately before starting the labeling reaction.
- Gel filtration column filled with Sephadex G-25 or equivalent.

Conjugate Preparation

- Dissolve 1 5 mg of protein in 1 ml of Solution A (PBS buffer, pH 7.4).
- Free thiol groups will react with dye-maleimide by adding a 1.3 fold molar excess of reactive dye (Solution E) while gently shaking. Variations due to different reactivities of both the protein and the labeling reagent may occur.
- Incubate the reaction mixture protected from light for 2 hours at room temperature.

Note: While dye-maleimides react readily with thiol (mercapto or sulfhydryl) groups, there is absolutely no reaction with disulfides. If the protein contains disulfide bonds and labeling at their position is desired, it is necessary to reduce the disulfide to thiol groups before labeling. For reduction, reagents such as tris(2-carboxyethyl)phosphin (TCEP) or dithiothreitol (DTT) may be used. However, great care has to be taken that any excess of these reducing agents has been removed (e.g. by dialysis) as they consume dye-maleimide themselves and in some cases even destroy the dye chromophore.

Conjugate Purification – Removal of Unbound Dye

Part of the applied dye maleimide will hydrolyze during the labeling reaction. The unreacted maleimide and the hydrolyzed maleimide must be removed from the labeled protein. We recommend using a Sephadex G-25 (or equivalent) gel filtration column (1 – 2 cm diameter and 10 – 20 cm length; for very hydrophilic dyes, e. g. ATTO 488, ATTO 514, ATTO 532, ATTO 594, a 30 cm column is preferable) for separation of dye-protein conjugate from free dye.

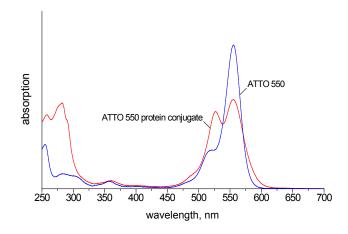
- Preequilibrate the column with Solution A.
- Elute the dye-protein conjugate using Solution A.
- The first colored and fluorescent zone to elute will be the desired dye-protein conjugate. A second and maybe third colored and fluorescent, but slower moving zone contains the unreacted and/or hydrolyzed maleimide.
- To prevent denaturation of the conjugate after elution, bovine serum albumin (BSA) or another stabilizer may be added.

Storage of the Protein Conjugates

In general, conjugates should be stored under the same conditions used for the unlabeled protein. For storage in solution at 4 °C, sodium azide (2 mM final concentration) can be added as a preservative. Removal of preservatives prior to use may be necessary to avoid inhibitory effects in applications in which conjugates are added to live cell specimens. The conjugate should be stable at 4 °C for several months. For long-term storage, divide the solution into small aliquots and freeze at -20 °C. Avoid repeated freezing and thawing. Protect dye conjugates from light as much as possible.

Determining the Degree of Labeling (DOL)

The degree of labeling (DOL, dye-to-protein ratio) obtained by the above procedures can be determined by absorption spectroscopy making use of the Lambert-Beer law: Absorbance (A) = extinction coefficient (ϵ) × molar concentration (c) × path length (d). Simply measure the UV-VIS spectrum of the conjugate solution as obtained after gel filtration in a quartz (UV-transparent) cell. You may need to dilute the solution, if it turns out to be too concentrated for a correct absorbance measurement. Determine the absorbance (A_{max}) at the absorption maximum (λ_{abs}) of the dye and the absorbance (A_{280}) at 280 nm (absorption maximum of proteins). The concentration of bound dye is given by: c(dye) = A_{max} / ϵ_{max} × d, where ϵ_{max} is the extinction coefficient of the dye at the absorption maximum. The protein concentration is obtained in the same


way from its absorbance at 280 nm. As all dyes show some absorption at 280 nm, the measured absorbance A_{280} must be corrected for the contribution of the dye. This is given by $A_{\text{max}} \times CF_{280}$. The values for the correction factor $CF_{280} = \epsilon_{280} / \epsilon_{\text{max}}$ are listed in the table on p.76. It follows for the absorbance of the protein itself:

 $A_{prot} = A_{280} - A_{max} \times CF_{280}$. Then the concentration of protein is: c(protein) = $A_{prot} / \epsilon_{prot} \times d$, where ϵ_{prot} is the extinction coefficient of the protein at 280 nm.

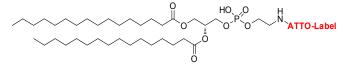
It follows for the degree of labeling, i.e. the average number of dye molecules coupled to a protein molecule: DOL = c(dye) / c(protein) and with the above relations:

$$DOL = \frac{A_{max} / \epsilon_{max}}{A_{prot} / \epsilon_{prot}} = \frac{A_{max} \cdot \epsilon_{prot}}{(A_{280} - A_{max} \cdot CF_{280}) \cdot \epsilon_{max}}$$

Note: The above equation is only valid if the extinction coefficient ε_{max} of the free dye at the absorption maximum is the same as the extinction coefficient of the conjugated dye at this wavelength. Due to dye aggregation effects this is frequently not the case. Hence the value calculated for DOL may be too low by 20 % or more. This is illustrated by direct comparison of the absorption spectra of ATTO 550 as free, i.e. unbound, dye (blue curve) and the same amount of dye, conjugated to a protein (red curve).

Table: Optical properties of ATTO-labels

Table: Optical properties of ATTO-labels							
Dye	MW, g NHS	g/mol Mal	λ_{abs} , nm	ε _{max} , M ⁻¹ cm ⁻¹	CF ₂₆₀	CF ₂₈₀	
ATTO 390	440	466	390	2.4 x 10 ⁴	0.52	0.08	
ATTO 425	499	524	436	4.5 x 10 ⁴	0.27	0.23	
ATTO 430LS	686	711	433	3.2 x 10 ⁴	0.41	0.26	
ATTO 465	493	518	453	7.5 x 10 ⁴	1.12	0.54	
ATTO 488	981	1067	501	9.0 x 10 ⁴	0.25	0.10	
ATTO 490LS	793	818	496	4.0 x 10 ⁴	0.37	0.18	
ATTO 495	549	574	495	8.0 x 10 ⁴	0.57	0.39	
ATTO 514	1111	990	511	1.15 x 10⁵	0.21	0.08	
ATTO 520	564	589	516	1.1 x 10 ⁵	0.13	0.18	
ATTO 532	1081	1063	532	1.15 x 10⁵	0.22	0.11	
ATTO Rho6G	711	750	535	1.15 x 10⁵	0.22	0.19	
ATTO 540Q	756	781	542	1.05 x 10⁵	0.22	0.24	
ATTO 550	791	816	554	1.2 x 10 ⁵	0.24	0.12	
ATTO 565	708	733	563	1.2 x 10 ⁵	0.34	0.16	
ATTO Rho3B	739	764	565	1.2 x 10 ⁵	0.28	0.14	
ATTO Rho11	763	788	571	1.2 x 10 ⁵	0.25	0.09	
ATTO Rho12	847	872	576	1.2 x 10 ⁵	0.27	0.09	
ATTO Thio12	699	724	579	1.1 x 10 ⁵	0.10	0.37	
ATTO Rho101	787	812	586	1.2 x 10 ⁵	0.24	0.19	
ATTO 580Q	892	917	586	1.1 x 10 ⁵	0.36	0.13	
ATTO 590	788	813	594	1.2 x 10 ⁵	0.42	0.44	
ATTO 594	1389	1358	601	1.2 x 10 ⁵	0.26	0.51	
ATTO Rho13	843	868	600	1.2 x 10 ⁵	0.38	0.44	
ATTO 610	588	613	615	1.5 x 10 ⁵	0.02	0.05	
ATTO 612Q	888	913	615	1.15 x 10 ⁵	0.35	0.57	
ATTO 620	709	734	619	1.2 x 10 ⁵	0.05	0.07	
ATTO Rho14	981	1020	625	1.4 x 10 ⁵	0.29	0.46	
ATTO 633	749	774	629	1.3 x 10 ⁵	0.05	0.06	
ATTO 647	811	829	645	1.2 x 10 ⁵	0.08	0.04	
ATTO 647 N	843	868	644	1.5 x 10 ⁵	0.06	0.05	
ATTO 655	887	812	663	1.25 x 10⁵	0.24	0.08	
ATTO Oxa12	835	875	663	1.25 x 10⁵	0.24	0.08	
ATTO 665	820	845	663	1.60 x 10 ⁵	0.07	0.06	
ATTO 680	828	1024	680	1.25 x 10 ⁵	0.30	0.17	
ATTO 700	837	971	700	1.2 x 10 ⁵	0.26	0.41	
ATTO 725	613	638	729	1.2 x 10 ⁵	0.10	0.08	
ATTO 740	665	690	740	1.2 x 10 ⁵	0.11	0.10	
ATTO MB2	553	591	658	1.0 x 10 ⁵	0.11	0.28	


Fluorescence Labeled Membrane Probes

The investigation of biological membranes, e.g. intracellular membranes of live cells, plasma membranes etc., has become a major area of interest. As a result there is a growing demand for fluorescent lipids, in particular phospholipids to be incorporated in biological membranes. **ATTO-TEC** now offers a variety of phospholipids based on glycerol carrying one or two fatty acids (lipophilic groups) and a phosphate monoester residue (hydrophilic group).

Natural phospholipids are the predominant building blocks of biological membranes and are generally very similar in structure. However, minor differences, e.g. number and length of the fatty acid chains, degree of unsaturation of the fatty acid and nature of hydrophilic head group may result in significant variations of the physical properties and biological activity of such membranes.

ATTO-fluorescent phospholipids are labeled at the hydrophilic head group. After incorporation of the fluorescent phospholipid the fluorophore is located at the water/lipid interface of the membrane. Currently we provide 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DOPE), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine (PPE), and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE) labeled with selected ATTO-dyes. We label other ATTO-dyes on request. Also for other labeled phospholipids including sphingolipids such as sphingomyelin please send an e-mail to info@atto-tec.com

1,2-Dipalmitoyl-s*n***-glycero-3-phosphoethanolamine** (DPPE)

	MW , g/mol	Order 1 mg	Code 5 mg
ATTO 390 DPPE new	1017	AD 390-151	AD 390-155
ATTO 488 DPPE	1264	AD 488-151	AD 488-155
ATTO 520 DPPE	1040	AD 520-151	AD 520-155
ATTO 532 DPPE	1320	AD 532-151	AD 532-155
ATTO 550 DPPE	1382	AD 550-151	AD 550-155
ATTO 565 DPPE new	1299	AD 565-151	AD 565-155
ATTO 590 DPPE	1379	AD 590-151	AD 590-155
ATTO 594 DPPE	1480	AD 594-151	AD 594-155
ATTO 633 DPPE	1326	AD 633-151	AD 633-155
ATTO 647 N DPPE	1420	AD 647 N -151	AD 647 N -155
ATTO 655 DPPE new	1316	AD 655-151	AD 655-155
ATTO 700 DPPE new	1353	AD 700-151	AD 700-155
ATTO 740 DPPE new	1142	AD 740-151	AD 740-155

1,2-Dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE)

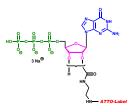
	MW, Order C		Code	
	g/mol	1 mg	5 mg	
ATTO 488 DMPE	1207	AD 488-191	AD 488-195	
ATTO 520 DMPE new	984	AD 520-191	AD 520-195	
ATTO 532 DMPE	1264	AD 532-191	AD 532-195	
ATTO 550 DMPE	1312	AD 550-191	AD 550-195	
ATTO 590 DMPE	1309	AD 590-191	AD 590-195	
ATTO 594 DMPE	1424	AD 594-191	AD 594-195	
ATTO 633 DMPE	1270	AD 633-191	AD 633-195	
ATTO 647N DMPE	1364	AD 647 N -191	AD 647 N -195	

1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE)

	MW , g/mol	Order	Code 5 mg
ATTO 390 DOPE new	1069	AD 390-161	AD 390-165
ATTO 488 DOPE	1316	AD 488-161	AD 488-165
ATTO 520 DOPE new	1092	AD 520-161	AD 520-165
ATTO 532 DOPE	1372	AD 532-161	AD 532-165
ATTO 540Q DOPE new	1285	AD 540Q-161	AD 540Q-165
ATTO 550 DOPE	1420	AD 550-161	AD 550-165
ATTO 590 DOPE	1417	AD 590-161	AD 590-165
ATTO 594 DOPE	1532	AD 594-161	AD 594-165
ATTO 633 DOPE	1378	AD 633-161	AD 633-165
ATTO 647 DOPE new	1319	AD 647-161	AD 647-165
ATTO 647 N DOPE	1485	AD 647 N -161	AD 647 N -165
ATTO 655 DOPE	1368	AD 655-161	AD 655-165
ATTO 680 DOPE	1366	AD 680-161	AD 680-165
ATTO 740 DOPE new	1194	AD 680-161	AD 680-165

1-Palmitoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine (PPE)

		011	
	MW,	Order Code	
	g/mol	1 mg	5 mg
ATTO 488 PPE	1025	AD 488-181	AD 488-185
ATTO 520 PPE new	802	AD 520-181	AD 520-185
ATTO 532 PPE	1081	AD 532-181	AD 532-185
ATTO 550 PPE	1130	AD 550-181	AD 550-185
ATTO 590 PPE	1127	AD 590-181	AD 590-185
ATTO 594 PPE	1241	AD 594-181	AD 594-185
ATTO 633 PPE	1088	AD 633-181	AD 633-185
ATTO 647 N PPE	1194	AD 647 N -181	AD 647 N -185


Fluorescence-Labeled Antibodies

ATTO-labeled antibodies are available from several renowned companies. They are fully licensed to offer their antibodies with numerous ATTO-dyes. A list of suppliers can be found on our website at www.atto-tec.com under "Miscellaneous - Labeled Antibodies".

Fluorescence-Labeled Nucleotides

In cooperation with Jena Bioscience **ATTO-TEC** offers fluorescence-labeled nucleotides.

Features:

- Labeling at different positions with spacers of different lengths.
- · Labels that cover the entire visible spectrum.
- Extraordinary properties (e.g., good water solubility, high signal intensity, chemical and photochemical stability).

All labeled nucleotides are supplied as ready-to-use aqueous solutions in various units and concentrations depending on the particular nucleotide and/or label.

For detailed information please visit www.jenabioscience.com.

Available ATTO-dye labeled nucleotides:

Labeled Uridine Nucleotides

- Aminoallyl-UTP (NU-821-xxx)
- Aminoallyl-dUTP (NU-803-xxx)
- 5-Propargylamino-ddUTP (NU-1619-xxx)

Labeled Cytidine Nucleotides

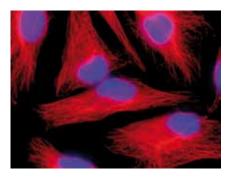
- 5-Propargylamino-CTP (NU-831-xxx)
- 5-Propargylamino-dCTP (NU-809-xxx)
- 5-Propargylamino-ddCTP (NU-850-xxx)

Labeled Guanosine and m7 Guanosine Nucleotides

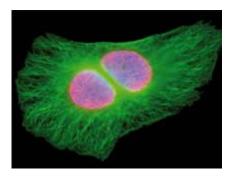
- 8-[(6-Amino)hexyl]-amino-GMP (NU-829-xxx)
- 8-[(6-Amino)hexyl]-amino-cGMP (NU-832-xxx)
- γ-[6-Aminohexyl]-GTP (NU-834-xxx)
- EDA-GTP (NU-820-xxx)
- 8-[(6-Amino)hexyl]-amino-GTP (NU-830-xxx)
- EDA-m⁷ GDP (NU-827-xxx)
- EDA-m⁷ GTP (NU-824-xxx)
- 7-Propargylamino-7-deaza-dGTP (NU-1615-xxx)
- 7-Propargylamino-7-deaza-ddGTP (NU-1618-xxx)

Labeled Adenosine Nucleotides

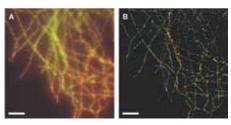
- EDA-ADP (NU-802-xxx)
- N6-(6-Amino)hexyl-ATP (NU-805-xxx)
- 8-[(6-Amino)hexyl]-amino-ATP (NU-807-xxx)
- EDA-ATP (NU-808-xxx)
- γ-[6-Aminohexyl]-ATP (NU-833-xxx)
- EDA-AppNHp (NU-810-xxx)
- 8-[(6-Amino)hexyl]-amino-adenosine-2',5'-bisphosphate (NU-812-xxx)
- 8-[(6-Amino)hexyl]-amino-adenosine-3',5'-bisphosphate (NU-811-xxx)
- N6-(6-Amino)hexyl-dATP (NU-835-xxx)
- 8-[(6-Amino)hexyl]-amino-cAMP (NU-851-xxx)
- 7-Propargylamino-7-deaza-dATP (NU-1611-xxx)
- 7-Propargylamino-7-deaza-ddATP (NU-1612-xxx)

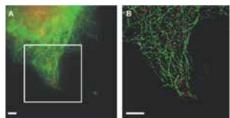

All above nucleotides are available with the ATTO-labels shown in the table below. They can be ordered directly from Jena Bioscience (www.jenabioscience.com) or via ATTO-TEC. Send an e-mail to sales@atto-tec.com and we will provide you with price information and lead time. To create the applicable order code, substitute for xxx the ATTO-dye number.

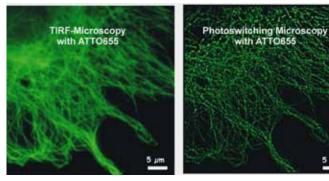
ATTO-Labels:


ATTO 390	ATTO 425	ATTO 430LS	ATTO 465	ATTO 488
ATTO 490LS	ATTO 495	ATTO 532	ATTO Rho 6G	ATTO 540Q
ATTO 550	ATTO 565	ATTO Rho3B	ATTO Rho11	ATTO Rho12
ATTO Thio12	ATTO 580Q	ATTO Rho101	ATTO 590	ATTO 594
ATTO Rho13	ATTO 612Q	ATTO 620	ATTO Rho14	ATTO 633
ATTO 647 N	ATTO 655	ATTO Oxa12	ATTO 665	ATTO 680
ATTO 700	ATTO 725	ATTO 740	ATTO MB2	

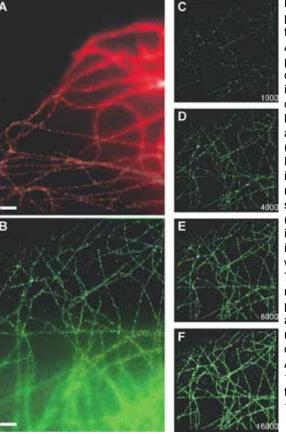
HeLa cells stained with LP Bio anti-alpha Tubulin, clone 5-B-1-2 primary and the Vendikar Yellow **ATTO 550** anti-mouse secondary. Blue: DAPI staining. Widefield image acquired with Zeiss Axio Observer.Z1 with halogen illumination.


HeLa cells stained with LP Bio antialpha Tubulin, clone 5-B-1-2 primary and the Regulus Red **ATTO 594** anti-mouse secondary. Blue: DAPI staining. Widefield image acquired with Zeiss Axio Observer.Z1 with halogen illumination.


HeLa cells stained with LP Bio anti-trimethyl-Lys27 Histone H3 primary and the Regulus Red ATTO 594 anti-rabbit secondary. Green: LP Bio anti-alpha Tubulin, clone 5-B-1-2 primary and the Regulus Red ATTO 594 anti-mouse secondary. Blue: DAPI staining. Widefield image acquired with Zeiss Axio Observer.Z1 with halogen illumination.



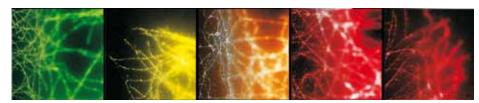
Dual-color photoswitching microscopy with ATTO 520 and ATTO 655 labeled microtubules in COS-7 cells. The reconstructed photoswitching image is shown in (B) and compared to the corresponding conventional wide-field image (A). Measurements were performed sequentially in PBS, pH 7.4 in the presence of 100 mM mercaptoethylamine at laser powers of 30 mW at 647 nm and 514 nm with a frame rate of 20 Hz. 16000 images were taken from the two spectrally different fluorophores (scale bar 5 µm).


Dual-color photoswitching microscopy with ATTO 520 labeled microtubules and ATTO 655 labeled cytochrome c oxidase localized in the inner mitochondrial membrane of COS-7 cells. The reconstructed dual-color photoswitching image (expanded section) is shown in (B) and compared to the corresponding conventional wide-field image (A). Measurements were performed successively in PBS, pH 7.4 in the presence of 100 mM mercaptoethylamine at laser powers of 30 mW at 647 nm and 514 nm with a frame rate of 20 Hz. 16000 images were taken from the two spectrally different fluorophores (scale bar 5 µm).

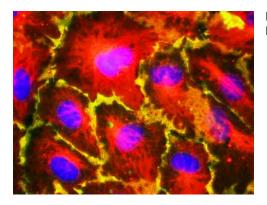
M. Sauer et al., University of Würzburg.

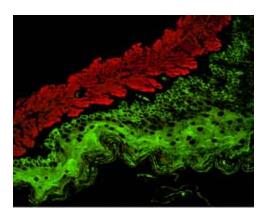
Photoswitching microscopy performed with **ATTO 655**. The left side shows a conventional immuno-fluorescence image of microtubules in COS-7 cells labeled with a primary antibody and **ATTO 655** labeled $F(ab')_2$ fragments. The right side shows photoswitching microscopy image with subdiffraction resolution (scale bar 5 μ m). Measurements were performed in PBS, pH 7.4 in the presence of 100 mM mercaptoethylamine at a laser power of 30 mW at 647 nm with a frame rate of 10 Hz.

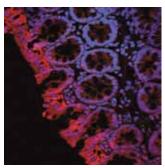
M. Sauer et al., University of Würzburg.



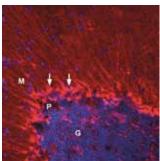
M. Sauer et al., University of Würzburg.


Photoswitching microscopy performed with the two standard fluorophores ATTO 655 and ATTO 520. The upper right part of image A and lower part of image B are conventional immuno-fluorescence images of microtubules in COS-7 cells labeled with a primary antibody and ATTO 655 (A) and ATTO 520 (B) labeled F(ab'), fragments. Photoswitching microscopy images with subdiffraction resolution (scale bar 1 µm) are superimposed in the lower left (A) and upper (B) part of the images to visualize resolution improvement. Measurements were performed in PBS, pH 7.4 in the presence of 100 mM mercaptoethylamine at a laser power of 30 mW at 647 nm (A) and 514 nm (B) with a frame rate of 10 Hz. (C-F) Evolution of a superresolution image with ATTO 520 as fluorophore (1000-16000 frames corresponding to measurement times of 100-1600 s).

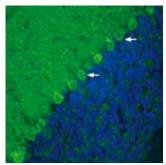



dSTORM super-resolution imaging of the cytoskeletal network of mammalian cells with different ATTO dyes spanning the visible wavelength range (from left to right: ATTO 520, ATTO 565, ATTO 590, ATTO 655, and ATTO 700). Immunofluorescence images (TIRF microscopy) of microtubules in COS-7 cells (10 μ m x 10 μ m) and corresponding reconstructed dSTORM images are superimposed to highlight the resolution improvement. Experiments were performed in PBS, pH 7.4, 10–200 mM mercaptoethylamine, with a frame rate of 10–20 Hz and excitation intensities of 1-4 kW/cm². M. Heilemann et al. Angew. Chem. Int. Ed. 48 (2009) 6903-6908.

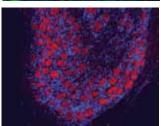
HUVEC: alpha-Tubulin/ATTO 532; E-Cadherin/ATTO 655 and DAPI.



Rat stomach: Actin stained with mouse anti-smooth muscle α -actin antibody and **ATTO 488** anti-mouse IgG (green). Cytokeratin stained with polyclonal rabbit anti-cytokeratin and **ATTO 647N** anti-rabbit IgG (red).


Expression of Aquaporin 3 in rat colon.

Rat colon sections (paraffin-embedded) were stained with Anti-Aquaporin 3-ATTO-594 antibody (1:100). Staining (red color) is present in absorptive cells of the colonic epithelium. Hoechst 33342 (blue) is used as counterstain.


Expression of K₂1.5 in mouse cerebellum.

Immunohistochemical staining of perfusion fixed, free-floating frozen mouse brain sections using Anti-K $_{v}$ 1.5-ATTO-550 (1:50). Staining (red) was detected in cerebellar Bergmann glial cells (white arrows). DAPI is used as the counterstain (blue). G = granule layer, P = Purkinje layer, M = molecular layer.

Expression of mGluR1 in rat cerebellum.

Immunohistochemical staining of rat cerebellum frozen sections using Anti-mGluR1 (extracellular)-ATTO-488 antibody (1:20). Staining (green) appears in cerebellar Purkinje cells (arrows) and in the molecular layer.

Expression of NMDAR2B (NR2B) in rat DRG.

Immunohistochemical staining of rat dorsal root ganglia (DRG) frozen sections using Anti-NMDA Receptor 2B (NR2B) (extracellular)-ATTO-594 antibody (1:50). Staining (red) is present in neuronal cell bodies. Hoechst 33342 is used as the counterstain (blue).

88 89

Abbreviation	
λ	wavelength
λ_{abs}	longest-wavelength absorption maximum
ε_{max}	molar decadic extinction coefficient at the longest-wavelength absorption maximum
ε ₂₆₀	molar decadic extinction coefficient at λ = 260 nm
ε ₂₈₀	molar decadic extinction coefficient at λ = 280 nm
CF ₂₆₀	$\text{CF}_{\text{\tiny{260}}}$ = $\epsilon_{\text{\tiny{260}}}$ / $\epsilon_{\text{\tiny{max}}}.$ Correction factor used in the determination of degree of labeling (DOL) in case of dye-DNA conjugates.
CF ₂₈₀	$\text{CF}_{\text{\tiny{280}}}$ = $\epsilon_{\text{\tiny{280}}}$ / $\epsilon_{\text{\tiny{max}}}.$ Correction factor used in the determination of degree of labeling (DOL) in case of dye-protein conjugates.
λ_{fl}	fluorescence maximum
η_{fl}	fluorescence quantum yield
τ_{fl}	real fluorescence decay time, $\tau_{\rm fl}$ = $\eta_{\rm fl} \times \tau_{\rm 0}$
τ_0	natural (radiative) decay time
$\eta_{\scriptscriptstyleT}$	triplet quantum yield
MW	molecular weight
M ⁺	molecular weight of dye cation (HPLC-MS)
MH ⁺	molecular weight of protonated dye (HPLC-MS)
An⁻	counterion(s)
Δm	increase of molecular mass on conjugation with ATTO-labels
Δq	change of electrical charge on conjugation with ATTO-labels
PBS	phosphate buffered saline
DOL	degree of labeling
HUVEC	human umbilical vein endothelial cells
DAPI	4',6-diamidino-2-phenylindole
FITC	fluorescein isothiocyanate
TAMRA	6-carboxytetramethylrhodamine
FAM	6-carboxyfluorescein
TET	tetrachloro-6-carboxyfluorescein
JOE	2,7-dimethoxy-4,5-dichloro-6-carboxyfluorescein
HEX	hexachloro-6-carboxyfluorescein
ROX	6-carboxy-X-rhodamine

ATTO-TEC GmbH is deeply grateful to the following individuals and companies for their contribution to this catalogue by providing fascinating images:

- Prof. Dr. Markus Sauer, Biotechnology and Biophysics, University of Würzburg, Germany
- Sigma-Aldrich Production GmbH, Buchs, Switzerland
- Prof. Dr. Peter Friedl and co-workers, Department of Organic Chemistry and Biochemistry, TU Darmstadt, Germany
- · Active Motif Corporation, Carlsbad, CA 92008, USA
- · Alomone Labs Ltd., Jerusalem, Israel

Trademarks:

Alexa 488, Alexa 532, Alexa 594, Alexa 633, Alexa 647 and Texas Red are trademarks of Invitrogen Corporation. Cy3, Cy3.5, Cy5 and Cy5.5 are trademarks of GE Healthcare Group Companies.

FAM, JOE, TET, HEX, ROX and TAMRA are trademarks of Applera Corporation or its subsidiaries in the US and/or certain other countries.

